import random import gradio as gr import numpy as np import spaces import torch from diffusers import AutoPipelineForText2Image, AutoencoderKL #,EulerDiscreteScheduler from compel import Compel, ReturnedEmbeddingsType if not torch.cuda.is_available(): DESCRIPTION += "\n
你现在运行在CPU上 但是此项目只支持GPU.
" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 4096 if torch.cuda.is_available(): vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) #vae = AutoencoderKL.from_pretrained("https://huggingface.co/scrapware/personal-backup/resolve/main/bakedvae/anyloraCheckpoint_bakedvaeTwinkleFp16.safetensors", torch_dtype=torch.float16) pipe = AutoPipelineForText2Image.from_pretrained( "John6666/noobai-xl-nai-xl-epsilonpred10version-sdxl", vae=vae, torch_dtype=torch.float16, use_safetensors=True, add_watermarker=False ) #pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") pipe.to("cuda") def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed @spaces.GPU def infer( prompt: str, negative_prompt: str = "lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", use_negative_prompt: bool = True, seed: int = 7, width: int = 1024, height: int = 1536, guidance_scale: float = 3, num_inference_steps: int = 30, randomize_seed: bool = True, use_resolution_binning: bool = True, progress=gr.Progress(track_tqdm=True), ): seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator().manual_seed(seed) compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True]) conditioning, pooled = compel(prompt) image = pipe( #prompt=prompt, prompt_embeds=conditioning, pooled_prompt_embeds=pooled, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, use_resolution_binning=use_resolution_binning, ).images[0] return image, seed examples = [ "nahida (genshin impact)", "klee (genshin impact)", ] css = ''' .gradio-container{max-width: 560px !important} h1{text-align:center} footer { visibility: hidden } ''' with gr.Blocks(css=css) as demo: gr.Markdown("""# 梦羽的模型生成器 ### 快速生成NoobAIXL v1.0的模型图片""") with gr.Group(): with gr.Row(): prompt = gr.Text( label="关键词", show_label=False, max_lines=1, placeholder="输入你要的图片关键词", container=False, ) run_button = gr.Button("生成", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False, format="png") with gr.Accordion("高级选项", open=False): with gr.Row(): use_negative_prompt = gr.Checkbox(label="使用反向词条", value=True) negative_prompt = gr.Text( label="反向词条", max_lines=5, lines=4, placeholder="输入你要排除的图片关键词", value="lowres, {bad}, error, fewer, extra, missing, worst quality, jpeg artifacts, bad quality, watermark, unfinished, displeasing, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", visible=True, ) seed = gr.Slider( label="种子", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="随机种子", value=True) with gr.Row(visible=True): width = gr.Slider( label="宽度", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024, ) height = gr.Slider( label="高度", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1536, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=10, step=0.1, value=7.0, ) num_inference_steps = gr.Slider( label="生成步数", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples=examples, inputs=prompt, outputs=[result, seed], fn=infer ) use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, ) gr.on( triggers=[prompt.submit,run_button.click], fn=infer, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()