Spaces:
Runtime error
Runtime error
Nde Dilan
commited on
Commit
·
d4e21df
1
Parent(s):
a5363fd
Add application file
Browse files- streamlit.py +130 -0
streamlit.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
import time
|
5 |
+
from main import PDFProcessor, SecurityException
|
6 |
+
|
7 |
+
# Configure page
|
8 |
+
st.set_page_config(
|
9 |
+
page_title="PDF Query Engine",
|
10 |
+
page_icon="📚",
|
11 |
+
layout="wide",
|
12 |
+
)
|
13 |
+
|
14 |
+
# Initialize processor
|
15 |
+
@st.cache_resource
|
16 |
+
def get_processor():
|
17 |
+
return PDFProcessor()
|
18 |
+
|
19 |
+
processor = get_processor()
|
20 |
+
|
21 |
+
# Create upload directory if it doesn't exist
|
22 |
+
upload_dir = Path("./uploads")
|
23 |
+
upload_dir.mkdir(exist_ok=True)
|
24 |
+
|
25 |
+
# Title and description
|
26 |
+
st.title("PDF Query Engine 🔍")
|
27 |
+
st.markdown("""
|
28 |
+
This application allows you to extract information from PDF documents using natural language queries.
|
29 |
+
Upload a PDF, wait for it to be processed, then ask questions about its content!
|
30 |
+
""")
|
31 |
+
|
32 |
+
# Sidebar
|
33 |
+
with st.sidebar:
|
34 |
+
st.header("About")
|
35 |
+
st.info("""
|
36 |
+
This tool uses natural language processing to extract and query information from PDFs.
|
37 |
+
|
38 |
+
**Features:**
|
39 |
+
- Extract text from PDFs
|
40 |
+
- Process into semantic chunks
|
41 |
+
- Query using natural language
|
42 |
+
- Get relevant context from the document
|
43 |
+
""")
|
44 |
+
|
45 |
+
st.header("Instructions")
|
46 |
+
st.markdown("""
|
47 |
+
1. Upload a PDF file (max 26MB)
|
48 |
+
2. Wait for processing to complete
|
49 |
+
3. Type your question in the query box
|
50 |
+
4. Review the results
|
51 |
+
""")
|
52 |
+
|
53 |
+
# File uploader
|
54 |
+
uploaded_file = st.file_uploader("Upload a PDF document", type=["pdf"])
|
55 |
+
|
56 |
+
# Process the uploaded file
|
57 |
+
if uploaded_file is not None:
|
58 |
+
# Save the uploaded file temporarily
|
59 |
+
temp_file_path = os.path.join(upload_dir, uploaded_file.name)
|
60 |
+
with open(temp_file_path, "wb") as f:
|
61 |
+
f.write(uploaded_file.getbuffer())
|
62 |
+
|
63 |
+
# Check if file has already been processed
|
64 |
+
file_hash = processor.get_file_hash(temp_file_path)
|
65 |
+
persist_directory = os.path.join(processor.config["db_directory"], file_hash)
|
66 |
+
already_processed = os.path.exists(persist_directory)
|
67 |
+
|
68 |
+
# Display file info
|
69 |
+
col1, col2 = st.columns(2)
|
70 |
+
with col1:
|
71 |
+
st.success(f"File uploaded: {uploaded_file.name}")
|
72 |
+
|
73 |
+
# Show file size
|
74 |
+
file_size = os.path.getsize(temp_file_path) / (1024 * 1024) # Convert to MB
|
75 |
+
st.info(f"File size: {file_size:.2f} MB")
|
76 |
+
|
77 |
+
with col2:
|
78 |
+
if already_processed:
|
79 |
+
st.info("This file has already been processed and is ready for querying.")
|
80 |
+
process_button = st.button("Re-process file")
|
81 |
+
else:
|
82 |
+
st.warning("This file needs to be processed before querying.")
|
83 |
+
process_button = st.button("Process file")
|
84 |
+
|
85 |
+
# Process the file when button is clicked
|
86 |
+
if process_button:
|
87 |
+
try:
|
88 |
+
with st.spinner("Processing PDF... This may take a minute."):
|
89 |
+
# Process file
|
90 |
+
vector_store = processor.process_file(temp_file_path)
|
91 |
+
|
92 |
+
if vector_store:
|
93 |
+
st.success("PDF processed successfully! You can now query the document.")
|
94 |
+
else:
|
95 |
+
st.error("Failed to process PDF. The file might be empty or corrupted.")
|
96 |
+
except SecurityException as e:
|
97 |
+
st.error(f"Security error: {str(e)}")
|
98 |
+
except Exception as e:
|
99 |
+
st.error(f"Error processing file: {str(e)}")
|
100 |
+
|
101 |
+
# Query interface
|
102 |
+
st.header("Ask questions about the document")
|
103 |
+
|
104 |
+
# Check if the document can be queried
|
105 |
+
can_query = os.path.exists(persist_directory)
|
106 |
+
|
107 |
+
if can_query:
|
108 |
+
query = st.text_input("Enter your question:")
|
109 |
+
k_value = st.slider("Number of results to return", min_value=1, max_value=10, value=3)
|
110 |
+
|
111 |
+
if st.button("Search") and query:
|
112 |
+
with st.spinner("Searching for answers..."):
|
113 |
+
try:
|
114 |
+
results = processor.query_document(temp_file_path, query, k=k_value)
|
115 |
+
|
116 |
+
if not results:
|
117 |
+
st.info("No relevant information found. Try rephrasing your question.")
|
118 |
+
else:
|
119 |
+
st.subheader("Search Results")
|
120 |
+
for i, doc in enumerate(results):
|
121 |
+
with st.expander(f"Result {i+1}"):
|
122 |
+
st.markdown(doc.page_content)
|
123 |
+
except Exception as e:
|
124 |
+
st.error(f"Error during query: {str(e)}")
|
125 |
+
else:
|
126 |
+
st.info("Please process the document before querying.")
|
127 |
+
|
128 |
+
# Add footer
|
129 |
+
st.markdown("---")
|
130 |
+
st.markdown("PDF Query Engine | Built with Streamlit and LangChain")
|