# @title Load functions for working with image coordinates and labels # @title Load utility functions for data loading and preprocessing from typing import Tuple, Union import torch import warnings warnings.filterwarnings("ignore", module="torchvision.datasets") def to_onehot(idx: torch.Tensor, n: int) -> torch.Tensor: """ One-hot encoding of a label """ if torch.max(idx).item() >= n: raise AssertionError( "Labelling must start from 0 and " "maximum label value must be less than total number of classes") device = 'cuda' if torch.cuda.is_available() else 'cpu' if idx.dim() == 1: idx = idx.unsqueeze(1) onehot = torch.zeros(idx.size(0), n, device=device) return onehot.scatter_(1, idx.to(device), 1) def grid2xy(X1: torch.Tensor, X2: torch.Tensor) -> torch.Tensor: X = torch.cat((X1[None], X2[None]), 0) d0, d1 = X.shape[0], X.shape[1] * X.shape[2] X = X.reshape(d0, d1).T return X def imcoordgrid(im_dim: Tuple) -> torch.Tensor: xx = torch.linspace(-1, 1, im_dim[0]) yy = torch.linspace(1, -1, im_dim[1]) x0, x1 = torch.meshgrid(xx, yy) return grid2xy(x0, x1) def transform_coordinates(coord: torch.Tensor, phi: Union[torch.Tensor, float] = 0, coord_dx: Union[torch.Tensor, float] = 0, ) -> torch.Tensor: if torch.sum(phi) == 0: phi = coord.new_zeros(coord.shape[0]) rotmat_r1 = torch.stack([torch.cos(phi), torch.sin(phi)], 1) rotmat_r2 = torch.stack([-torch.sin(phi), torch.cos(phi)], 1) rotmat = torch.stack([rotmat_r1, rotmat_r2], axis=1) coord = torch.bmm(coord, rotmat) return coord + coord_dx