Spaces:
Sleeping
Sleeping
File size: 12,649 Bytes
b2ffc9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import numpy as np
import torch
import torch.nn as nn
from torch import tensor as tt
from typing import Optional, Tuple, Type
import pyro
import pyro.distributions as dist
import warnings
from atoms_detection.vae_image_utils import imcoordgrid, to_onehot, transform_coordinates
warnings.filterwarnings("ignore", module="torchvision.datasets")
# VAE model set-up
# @title Load neural networks for VAE { form-width: "25%" }
def set_deterministic_mode(seed: int) -> None:
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def make_fc_layers(in_dim: int,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = "tanh"
) -> Type[nn.Module]:
"""
Generates a module with stacked fully-connected (aka dense) layers
"""
activations = {"tanh": nn.Tanh, "lrelu": nn.LeakyReLU, "softplus": nn.Softplus}
fc_layers = []
for i in range(num_layers):
hidden_dim_ = in_dim if i == 0 else hidden_dim
fc_layers.extend(
[nn.Linear(hidden_dim_, hidden_dim), activations[activation]()])
fc_layers = nn.Sequential(*fc_layers)
return fc_layers
class fcEncoderNet(nn.Module):
"""
Simple fully-connected inference (encoder) network
"""
def __init__(self,
in_dim: Tuple[int,int],
latent_dim: int = 2,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = 'tanh',
softplus_out: bool = False
) -> None:
"""
Initializes module parameters
"""
super(fcEncoderNet, self).__init__()
if len(in_dim) not in [1, 2, 3]:
raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
self.in_dim = torch.prod(tt(in_dim)).item()
self.fc_layers = make_fc_layers(
self.in_dim, hidden_dim, num_layers, activation)
self.fc11 = nn.Linear(hidden_dim, latent_dim)
self.fc12 = nn.Linear(hidden_dim, latent_dim)
self.activation_out = nn.Softplus() if softplus_out else lambda x: x
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
"""
Forward pass
"""
x = x.view(-1, self.in_dim)
x = self.fc_layers(x)
mu = self.fc11(x)
log_sigma = self.activation_out(self.fc12(x))
return mu, log_sigma
class fcDecoderNet(nn.Module):
"""
Standard decoder for VAE
"""
def __init__(self,
out_dim: Tuple[int],
latent_dim: int,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = 'tanh',
sigmoid_out: str = True,
) -> None:
super(fcDecoderNet, self).__init__()
if len(out_dim) not in [1, 2, 3]:
raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
self.reshape = out_dim
out_dim = torch.prod(tt(out_dim)).item()
self.fc_layers = make_fc_layers(
latent_dim, hidden_dim, num_layers, activation)
self.out = nn.Linear(hidden_dim, out_dim)
self.activation_out = nn.Sigmoid() if sigmoid_out else lambda x: x
def forward(self, z: torch.Tensor) -> torch.Tensor:
x = self.fc_layers(z)
x = self.activation_out(self.out(x))
return x.view(-1, *self.reshape)
class rDecoderNet(nn.Module):
"""
Spatial generator (decoder) network with fully-connected layers
"""
def __init__(self,
out_dim: Tuple[int],
latent_dim: int,
hidden_dim: int = 128,
num_layers: int = 2,
activation: str = 'tanh',
sigmoid_out: str = True
) -> None:
"""
Initializes module parameters
"""
super(rDecoderNet, self).__init__()
if len(out_dim) not in [1, 2, 3]:
raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
self.reshape = out_dim
out_dim = torch.prod(tt(out_dim)).item()
self.coord_latent = coord_latent(latent_dim, hidden_dim)
self.fc_layers = make_fc_layers(
hidden_dim, hidden_dim, num_layers, activation)
self.out = nn.Linear(hidden_dim, 1) # need to generalize to multi-channel (c > 1)
self.activation_out = nn.Sigmoid() if sigmoid_out else lambda x: x
def forward(self, x_coord: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
"""
Forward pass
"""
x = self.coord_latent(x_coord, z)
x = self.fc_layers(x)
x = self.activation_out(self.out(x))
return x.view(-1, *self.reshape)
class coord_latent(nn.Module):
"""
The "spatial" part of the rVAE's decoder that allows for translational
and rotational invariance (based on https://arxiv.org/abs/1909.11663)
"""
def __init__(self,
latent_dim: int,
out_dim: int,
activation_out: bool = True) -> None:
"""
Iniitalizes modules parameters
"""
super(coord_latent, self).__init__()
self.fc_coord = nn.Linear(2, out_dim)
self.fc_latent = nn.Linear(latent_dim, out_dim, bias=False)
self.activation = nn.Tanh() if activation_out else None
def forward(self,
x_coord: torch.Tensor,
z: torch.Tensor) -> torch.Tensor:
"""
Forward pass
"""
batch_dim, n = x_coord.size()[:2]
x_coord = x_coord.reshape(batch_dim * n, -1)
h_x = self.fc_coord(x_coord)
h_x = h_x.reshape(batch_dim, n, -1)
h_z = self.fc_latent(z)
h = h_x.add(h_z.unsqueeze(1))
h = h.reshape(batch_dim * n, -1)
if self.activation is not None:
h = self.activation(h)
return h
class rVAE(nn.Module):
"""
Variational autoencoder with rotational and/or transaltional invariance
"""
def __init__(self,
in_dim: Tuple[int, int],
latent_dim: int = 2,
coord: int = 3,
num_classes: int = 0,
hidden_dim_e: int = 128,
hidden_dim_d: int = 128,
num_layers_e: int = 2,
num_layers_d: int = 2,
activation: str = "tanh",
softplus_sd: bool = True,
sigmoid_out: bool = True,
seed: int = 1,
**kwargs
) -> None:
"""
Initializes rVAE's modules and parameters
"""
super(rVAE, self).__init__()
pyro.clear_param_store()
set_deterministic_mode(seed)
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.encoder_net = fcEncoderNet(
in_dim, latent_dim+coord, hidden_dim_e,
num_layers_e, activation, softplus_sd)
if coord not in [0, 1, 2, 3]:
raise ValueError("'coord' argument must be 0, 1, 2 or 3")
dnet = rDecoderNet if coord in [1, 2, 3] else fcDecoderNet
self.decoder_net = dnet(
in_dim, latent_dim+num_classes, hidden_dim_d,
num_layers_d, activation, sigmoid_out)
self.z_dim = latent_dim + coord
self.coord = coord
self.num_classes = num_classes
self.grid = imcoordgrid(in_dim).to(self.device)
self.dx_prior = tt(kwargs.get("dx_prior", 0.1)).to(self.device)
self.to(self.device)
def model(self,
x: torch.Tensor,
y: Optional[torch.Tensor] = None,
**kwargs: float) -> torch.Tensor:
"""
Defines the model p(x|z)p(z)
"""
# register PyTorch module `decoder_net` with Pyro
pyro.module("decoder_net", self.decoder_net)
# KLD scale factor (see e.g. https://openreview.net/pdf?id=Sy2fzU9gl)
beta = kwargs.get("scale_factor", 1.)
reshape_ = torch.prod(tt(x.shape[1:])).item()
with pyro.plate("data", x.shape[0]):
# setup hyperparameters for prior p(z)
z_loc = x.new_zeros(torch.Size((x.shape[0], self.z_dim)))
z_scale = x.new_ones(torch.Size((x.shape[0], self.z_dim)))
# sample from prior (value will be sampled by guide when computing the ELBO)
with pyro.poutine.scale(scale=beta):
z = pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
if self.coord > 0: # rotationally- and/or translationaly-invariant mode
# Split latent variable into parts for rotation
# and/or translation and image content
phi, dx, z = self.split_latent(z)
if torch.sum(dx) != 0:
dx = (dx * self.dx_prior).unsqueeze(1)
# transform coordinate grid
grid = self.grid.expand(x.shape[0], *self.grid.shape)
x_coord_prime = transform_coordinates(grid, phi, dx)
# Add class label (if any)
if y is not None:
y = to_onehot(y, self.num_classes)
z = torch.cat([z, y], dim=-1)
# decode the latent code z together with the transformed coordiantes (if any)
dec_args = (x_coord_prime, z) if self.coord else (z,)
loc_img = self.decoder_net(*dec_args)
# score against actual images ("binary cross-entropy loss")
pyro.sample(
"obs", dist.Bernoulli(loc_img.view(-1, reshape_), validate_args=False).to_event(1),
obs=x.view(-1, reshape_))
def guide(self,
x: torch.Tensor,
y: Optional[torch.Tensor] = None,
**kwargs: float) -> torch.Tensor:
"""
Defines the guide q(z|x)
"""
# register PyTorch module `encoder_net` with Pyro
pyro.module("encoder_net", self.encoder_net)
# KLD scale factor (see e.g. https://openreview.net/pdf?id=Sy2fzU9gl)
beta = kwargs.get("scale_factor", 1.)
with pyro.plate("data", x.shape[0]):
# use the encoder to get the parameters used to define q(z|x)
z_loc, z_scale = self.encoder_net(x)
# sample the latent code z
with pyro.poutine.scale(scale=beta):
pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
def split_latent(self, z: torch.Tensor) -> Tuple[torch.Tensor]:
"""
Split latent variable into parts for rotation
and/or translation and image content
"""
phi, dx = tt(0), tt(0)
# rotation + translation
if self.coord == 3:
phi = z[:, 0] # encoded angle
dx = z[:, 1:3] # translation
z = z[:, 3:] # image content
# translation only
elif self.coord == 2:
dx = z[:, :2]
z = z[:, 2:]
# rotation only
elif self.coord == 1:
phi = z[:, 0]
z = z[:, 1:]
return phi, dx, z
def _encode(self, x_new: torch.Tensor, **kwargs: int) -> torch.Tensor:
"""
Encodes data using a trained inference (encoder) network
in a batch-by-batch fashion
"""
def inference() -> np.ndarray:
with torch.no_grad():
encoded = self.encoder_net(x_i)
encoded = torch.cat(encoded, -1).cpu()
return encoded
x_new = x_new.to(self.device)
num_batches = kwargs.get("num_batches", 10)
batch_size = len(x_new) // num_batches
z_encoded = []
for i in range(num_batches):
x_i = x_new[i*batch_size:(i+1)*batch_size]
z_encoded_i = inference()
z_encoded.append(z_encoded_i)
x_i = x_new[(i+1)*batch_size:]
if len(x_i) > 0:
z_encoded_i = inference()
z_encoded.append(z_encoded_i)
return torch.cat(z_encoded)
def encode(self, x_new: torch.Tensor, **kwargs: int) -> torch.Tensor:
"""
Encodes data using a trained inference (encoder) network
(this is baiscally a wrapper for self._encode)
"""
if isinstance(x_new, torch.utils.data.DataLoader):
x_new = train_loader.dataset.tensors[0]
z = self._encode(x_new)
z_loc = z[:, :self.z_dim]
z_scale = z[:, self.z_dim:]
return z_loc, z_scale
|