File size: 12,649 Bytes
b2ffc9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

import numpy as np


import torch
import torch.nn as nn
from torch import tensor as tt

from typing import Optional, Tuple, Type

import pyro
import pyro.distributions as dist

import warnings

from atoms_detection.vae_image_utils import imcoordgrid, to_onehot, transform_coordinates

warnings.filterwarnings("ignore", module="torchvision.datasets")

# VAE model set-up
# @title Load neural networks for VAE { form-width: "25%" }


def set_deterministic_mode(seed: int) -> None:
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


def make_fc_layers(in_dim: int,
                   hidden_dim: int = 128,
                   num_layers: int = 2,
                   activation: str = "tanh"
                   ) -> Type[nn.Module]:
    """
    Generates a module with stacked fully-connected (aka dense) layers
    """
    activations = {"tanh": nn.Tanh, "lrelu": nn.LeakyReLU, "softplus": nn.Softplus}
    fc_layers = []
    for i in range(num_layers):
        hidden_dim_ = in_dim if i == 0 else hidden_dim
        fc_layers.extend(
            [nn.Linear(hidden_dim_, hidden_dim), activations[activation]()])
    fc_layers = nn.Sequential(*fc_layers)
    return fc_layers


class fcEncoderNet(nn.Module):
    """
    Simple fully-connected inference (encoder) network
    """
    def __init__(self,
                 in_dim: Tuple[int,int],
                 latent_dim: int = 2,
                 hidden_dim: int = 128,
                 num_layers: int = 2,
                 activation: str = 'tanh',
                 softplus_out: bool = False
                 ) -> None:
        """
        Initializes module parameters
        """
        super(fcEncoderNet, self).__init__()
        if len(in_dim) not in [1, 2, 3]:
            raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
        self.in_dim = torch.prod(tt(in_dim)).item()

        self.fc_layers = make_fc_layers(
            self.in_dim, hidden_dim, num_layers, activation)
        self.fc11 = nn.Linear(hidden_dim, latent_dim)
        self.fc12 = nn.Linear(hidden_dim, latent_dim)
        self.activation_out = nn.Softplus() if softplus_out else lambda x: x

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
        """
        Forward pass
        """
        x = x.view(-1, self.in_dim)
        x = self.fc_layers(x)
        mu = self.fc11(x)
        log_sigma = self.activation_out(self.fc12(x))
        return mu, log_sigma


class fcDecoderNet(nn.Module):
    """
    Standard decoder for VAE
    """
    def __init__(self,
                 out_dim: Tuple[int],
                 latent_dim: int,
                 hidden_dim: int = 128,
                 num_layers: int = 2,
                 activation: str = 'tanh',
                 sigmoid_out: str = True,
                 ) -> None:
        super(fcDecoderNet, self).__init__()
        if len(out_dim) not in [1, 2, 3]:
            raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
        self.reshape = out_dim
        out_dim = torch.prod(tt(out_dim)).item()

        self.fc_layers = make_fc_layers(
            latent_dim, hidden_dim, num_layers, activation)
        self.out = nn.Linear(hidden_dim, out_dim)
        self.activation_out = nn.Sigmoid() if sigmoid_out else lambda x: x

    def forward(self, z: torch.Tensor) -> torch.Tensor:
        x = self.fc_layers(z)
        x = self.activation_out(self.out(x))
        return x.view(-1, *self.reshape)


class rDecoderNet(nn.Module):
    """
    Spatial generator (decoder) network with fully-connected layers
    """
    def __init__(self,
                 out_dim: Tuple[int],
                 latent_dim: int,
                 hidden_dim: int = 128,
                 num_layers: int = 2,
                 activation: str = 'tanh',
                 sigmoid_out: str = True
                 ) -> None:
        """
        Initializes module parameters
        """
        super(rDecoderNet, self).__init__()
        if len(out_dim) not in [1, 2, 3]:
            raise ValueError("in_dim must be (h, w), (h, w, c), or (h*w*c,)")
        self.reshape = out_dim
        out_dim = torch.prod(tt(out_dim)).item()

        self.coord_latent = coord_latent(latent_dim, hidden_dim)
        self.fc_layers = make_fc_layers(
            hidden_dim, hidden_dim, num_layers, activation)
        self.out = nn.Linear(hidden_dim, 1)   # need to generalize to multi-channel (c > 1)
        self.activation_out = nn.Sigmoid() if sigmoid_out else lambda x: x

    def forward(self, x_coord: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
        """
        Forward pass
        """
        x = self.coord_latent(x_coord, z)
        x = self.fc_layers(x)
        x = self.activation_out(self.out(x))
        return x.view(-1, *self.reshape)


class coord_latent(nn.Module):
    """
    The "spatial" part of the rVAE's decoder that allows for translational
    and rotational invariance (based on https://arxiv.org/abs/1909.11663)
    """
    def __init__(self,
                 latent_dim: int,
                 out_dim: int,
                 activation_out: bool = True) -> None:
        """
        Iniitalizes modules parameters
        """
        super(coord_latent, self).__init__()
        self.fc_coord = nn.Linear(2, out_dim)
        self.fc_latent = nn.Linear(latent_dim, out_dim, bias=False)
        self.activation = nn.Tanh() if activation_out else None

    def forward(self,
                x_coord: torch.Tensor,
                z: torch.Tensor) -> torch.Tensor:
        """
        Forward pass
        """
        batch_dim, n = x_coord.size()[:2]
        x_coord = x_coord.reshape(batch_dim * n, -1)
        h_x = self.fc_coord(x_coord)
        h_x = h_x.reshape(batch_dim, n, -1)
        h_z = self.fc_latent(z)
        h = h_x.add(h_z.unsqueeze(1))
        h = h.reshape(batch_dim * n, -1)
        if self.activation is not None:
            h = self.activation(h)
        return h


class rVAE(nn.Module):
    """
    Variational autoencoder with rotational and/or transaltional invariance
    """
    def __init__(self,
                 in_dim: Tuple[int, int],
                 latent_dim: int = 2,
                 coord: int = 3,
                 num_classes: int = 0,
                 hidden_dim_e: int = 128,
                 hidden_dim_d: int = 128,
                 num_layers_e: int = 2,
                 num_layers_d: int = 2,
                 activation: str = "tanh",
                 softplus_sd: bool = True,
                 sigmoid_out: bool = True,
                 seed: int = 1,
                 **kwargs
                 ) -> None:
        """
        Initializes rVAE's modules and parameters
        """
        super(rVAE, self).__init__()
        pyro.clear_param_store()
        set_deterministic_mode(seed)
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.encoder_net = fcEncoderNet(
            in_dim, latent_dim+coord, hidden_dim_e,
            num_layers_e, activation, softplus_sd)
        if coord not in [0, 1, 2, 3]:
            raise ValueError("'coord' argument must be 0, 1, 2 or 3")
        dnet = rDecoderNet if coord in [1, 2, 3] else fcDecoderNet
        self.decoder_net = dnet(
            in_dim, latent_dim+num_classes, hidden_dim_d,
            num_layers_d, activation, sigmoid_out)
        self.z_dim = latent_dim + coord
        self.coord = coord
        self.num_classes = num_classes
        self.grid = imcoordgrid(in_dim).to(self.device)
        self.dx_prior = tt(kwargs.get("dx_prior", 0.1)).to(self.device)
        self.to(self.device)

    def model(self,
              x: torch.Tensor,
              y: Optional[torch.Tensor] = None,
              **kwargs: float) -> torch.Tensor:
        """
        Defines the model p(x|z)p(z)
        """
        # register PyTorch module `decoder_net` with Pyro
        pyro.module("decoder_net", self.decoder_net)
        # KLD scale factor (see e.g. https://openreview.net/pdf?id=Sy2fzU9gl)
        beta = kwargs.get("scale_factor", 1.)
        reshape_ = torch.prod(tt(x.shape[1:])).item()
        with pyro.plate("data", x.shape[0]):
            # setup hyperparameters for prior p(z)
            z_loc = x.new_zeros(torch.Size((x.shape[0], self.z_dim)))
            z_scale = x.new_ones(torch.Size((x.shape[0], self.z_dim)))
            # sample from prior (value will be sampled by guide when computing the ELBO)
            with pyro.poutine.scale(scale=beta):
                z = pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))
            if self.coord > 0:  # rotationally- and/or translationaly-invariant mode
                # Split latent variable into parts for rotation
                # and/or translation and image content
                phi, dx, z = self.split_latent(z)
                if torch.sum(dx) != 0:
                    dx = (dx * self.dx_prior).unsqueeze(1)
                # transform coordinate grid
                grid = self.grid.expand(x.shape[0], *self.grid.shape)
                x_coord_prime = transform_coordinates(grid, phi, dx)
            # Add class label (if any)
            if y is not None:
                y = to_onehot(y, self.num_classes)
                z = torch.cat([z, y], dim=-1)
            # decode the latent code z together with the transformed coordiantes (if any)
            dec_args = (x_coord_prime, z) if self.coord else (z,)
            loc_img = self.decoder_net(*dec_args)
            # score against actual images ("binary cross-entropy loss")
            pyro.sample(
                "obs", dist.Bernoulli(loc_img.view(-1, reshape_), validate_args=False).to_event(1),
                obs=x.view(-1, reshape_))

    def guide(self,
              x: torch.Tensor,
              y: Optional[torch.Tensor] = None,
              **kwargs: float) -> torch.Tensor:
        """
        Defines the guide q(z|x)
        """
        # register PyTorch module `encoder_net` with Pyro
        pyro.module("encoder_net", self.encoder_net)
        # KLD scale factor (see e.g. https://openreview.net/pdf?id=Sy2fzU9gl)
        beta = kwargs.get("scale_factor", 1.)
        with pyro.plate("data", x.shape[0]):
            # use the encoder to get the parameters used to define q(z|x)
            z_loc, z_scale = self.encoder_net(x)
            # sample the latent code z
            with pyro.poutine.scale(scale=beta):
                pyro.sample("latent", dist.Normal(z_loc, z_scale).to_event(1))

    def split_latent(self, z: torch.Tensor) -> Tuple[torch.Tensor]:
        """
        Split latent variable into parts for rotation
        and/or translation and image content
        """
        phi, dx = tt(0), tt(0)
        # rotation + translation
        if self.coord == 3:
            phi = z[:, 0]  # encoded angle
            dx = z[:, 1:3]  # translation
            z = z[:, 3:]  # image content
        # translation only
        elif self.coord == 2:
            dx = z[:, :2]
            z = z[:, 2:]
        # rotation only
        elif self.coord == 1:
            phi = z[:, 0]
            z = z[:, 1:]
        return phi, dx, z

    def _encode(self, x_new: torch.Tensor, **kwargs: int) -> torch.Tensor:
        """
        Encodes data using a trained inference (encoder) network
        in a batch-by-batch fashion
        """
        def inference() -> np.ndarray:
            with torch.no_grad():
                encoded = self.encoder_net(x_i)
            encoded = torch.cat(encoded, -1).cpu()
            return encoded

        x_new = x_new.to(self.device)
        num_batches = kwargs.get("num_batches", 10)
        batch_size = len(x_new) // num_batches
        z_encoded = []
        for i in range(num_batches):
            x_i = x_new[i*batch_size:(i+1)*batch_size]
            z_encoded_i = inference()
            z_encoded.append(z_encoded_i)
        x_i = x_new[(i+1)*batch_size:]
        if len(x_i) > 0:
            z_encoded_i = inference()
            z_encoded.append(z_encoded_i)
        return torch.cat(z_encoded)

    def encode(self, x_new: torch.Tensor, **kwargs: int) -> torch.Tensor:
        """
        Encodes data using a trained inference (encoder) network
        (this is baiscally a wrapper for self._encode)
        """
        if isinstance(x_new, torch.utils.data.DataLoader):
            x_new = train_loader.dataset.tensors[0]
        z = self._encode(x_new)
        z_loc = z[:, :self.z_dim]
        z_scale = z[:, self.z_dim:]
        return z_loc, z_scale