wzkariampuzha commited on
Commit
94675c0
·
1 Parent(s): 8d4dc06

Create old_app.py

Browse files
Files changed (1) hide show
  1. old_app.py +160 -0
old_app.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import nltk
2
+ nltk.data.path.append("/home/user/app/nltk_data")
3
+ #nltk.download('stopwords')
4
+ #nltk.download('punkt')
5
+ import classify_abs
6
+ import extract_abs
7
+ import pandas as pd
8
+ #pd.set_option('display.max_colwidth', None)
9
+ import streamlit as st
10
+ st.set_page_config(layout="wide")
11
+ import spacy
12
+ import tensorflow as tf
13
+ import pickle
14
+ import re
15
+ import plotly.graph_objects as go
16
+
17
+ #### LOGO ####
18
+ st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4RD/raw/main/ncats.svg" alt="National Center for Advancing Translational Sciences Logo">''',unsafe_allow_html=True)
19
+ st.markdown("")
20
+ st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4RD/resolve/main/Logo_GARD_fullres.png" alt="NIH Genetic and Rare Diseases Information Center Logo" width=400>''',unsafe_allow_html=True)
21
+
22
+
23
+ #st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/raw/main/ncats.svg" alt="National Center for Advancing Translational Sciences Logo" width=800>''',unsafe_allow_html=True)
24
+ #st.markdown("")
25
+ #st.markdown('''<img src="https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/Logo_GARD_fullres.png" alt="NIH Genetic and Rare Diseases Information Center Logo" width=800>''',unsafe_allow_html=True)
26
+ #st.markdown("![National Center for Advancing Translational Sciences (NCATS) Logo](https://huggingface.co/spaces/ncats/EpiPipeline4GARD/resolve/main/NCATS_logo.png)")
27
+
28
+ #### TITLE ####
29
+ st.title("Epidemiological Information Extraction Pipeline for Rare Diseases")
30
+ #st.subheader("National Center for Advancing Translational Sciences (NIH/NCATS)")
31
+
32
+ #### CHANGE SIDEBAR WIDTH ###
33
+ st.markdown(
34
+ """
35
+ <style>
36
+ [data-testid="stSidebar"][aria-expanded="true"] > div:first-child {
37
+ width: 250px;
38
+ }
39
+ [data-testid="stSidebar"][aria-expanded="false"] > div:first-child {
40
+ width: 250px;
41
+ margin-left: -350px;
42
+ }
43
+ </style>
44
+ """,
45
+ unsafe_allow_html=True,
46
+ )
47
+
48
+ #### DESCRIPTION ####
49
+ st.markdown("This application was built by the [National Center for Advancing Translational Sciences (NCATS)](https://ncats.nih.gov/) to automatically search and extract rare disease epidemiology information from PubMed abstracts.")
50
+
51
+ #### SIDEBAR WIDGETS ####
52
+
53
+ #max_results is Maximum number of PubMed ID's to retrieve BEFORE filtering
54
+ max_results = st.sidebar.number_input("Maximum number of articles to find in PubMed", min_value=1, max_value=None, value=50)
55
+
56
+ filtering = st.sidebar.radio("What type of filtering would you like?",('Strict', 'Lenient', 'None')).lower()
57
+
58
+ extract_diseases = st.sidebar.checkbox("Extract Rare Diseases", value=False)
59
+
60
+ #### MODEL LOADING ####
61
+
62
+ @st.experimental_singleton(show_spinner=False)
63
+ def load_models_experimental():
64
+ classify_model_vars = classify_abs.init_classify_model()
65
+ NER_pipeline, entity_classes = extract_abs.init_NER_pipeline()
66
+ GARD_dict, max_length = extract_abs.load_GARD_diseases()
67
+ return classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length
68
+
69
+ #### DOWNLOAD FUNCTION ####
70
+
71
+ @st.cache
72
+ def convert_df(df):
73
+ # IMPORTANT: Cache the conversion to prevent computation on every rerun
74
+ return df.to_csv().encode('utf-8')
75
+
76
+ #### SANKEY FUNCTION ####
77
+
78
+ #@st.cache(allow_output_mutation=True)
79
+ @st.experimental_singleton()
80
+ def epi_sankey(sankey_data, disease_or_gard_id):
81
+ found, relevant, epidemiologic = sankey_data
82
+
83
+ fig = go.Figure(data=[go.Sankey(
84
+ node = dict(
85
+ pad = 15,
86
+ thickness = 20,
87
+ line = dict(color = "white", width = 0.5),
88
+ label = ["PubMed IDs Gathered", "Irrelevant Abstracts","Relevant Abstracts Gathered","Epidemiologic Abstracts","Not Epidemiologic"],
89
+ color = "purple"
90
+ ),
91
+ #label = ["A1", "A2", "B1", "B2", "C1", "C2"]
92
+ link = dict(
93
+ source = [0, 0, 2, 2],
94
+ target = [2, 1, 3, 4],
95
+ value = [relevant, found-relevant, epidemiologic, relevant-epidemiologic]
96
+ ))])
97
+ fig.update_layout(
98
+ hovermode = 'x',
99
+ title="Search for the Epidemiology of "+disease_or_gard_id,
100
+ font=dict(size = 10, color = 'black'),
101
+ )
102
+
103
+ return fig
104
+
105
+ #### BEGIN APP ####
106
+
107
+ with st.spinner('Loading Epidemiology Models and Dependencies...'):
108
+ classify_model_vars, NER_pipeline, entity_classes, GARD_dict, max_length = load_models_experimental()
109
+ loaded = st.success('All Models and Dependencies Loaded!')
110
+
111
+ disease_or_gard_id = st.text_input("Input a rare disease term or NIH GARD ID.")
112
+
113
+ loaded.empty()
114
+
115
+ st.markdown("Examples of rare diseases include [**Fellman syndrome**](https://rarediseases.info.nih.gov/diseases/1/gracile-syndrome), [**Classic Homocystinuria**](https://rarediseases.info.nih.gov/diseases/6667/classic-homocystinuria), [**7383**](https://rarediseases.info.nih.gov/diseases/7383/phenylketonuria), and [**GARD:0009941**](https://rarediseases.info.nih.gov/diseases/9941/fshmd1a). A full list of rare diseases tracked by the NIH Genetic and Rare Diseases Information Center (GARD) can be found [here](https://rarediseases.info.nih.gov/diseases/browse-by-first-letter).")
116
+
117
+ if disease_or_gard_id:
118
+ df, sankey_data, name_gardID = extract_abs.streamlit_extraction(disease_or_gard_id, max_results, filtering,
119
+ NER_pipeline, entity_classes,
120
+ extract_diseases, GARD_dict, max_length,
121
+ classify_model_vars)
122
+ #IF it returns something, then continue.
123
+ if sankey_data:
124
+ df.replace(to_replace='None', value="None")
125
+ st.dataframe(df, height=200)
126
+ csv = convert_df(df)
127
+ disease, gardID = name_gardID
128
+ #if the user input does not have a number in it (i.e. weak proxy for if it is a GARD ID), then preserve the user input as the disease term.
129
+ if not bool(re.search(r'\d', disease_or_gard_id)):
130
+ disease = disease_or_gard_id
131
+
132
+ st.download_button(
133
+ label="Download epidemiology results for "+disease+" as CSV",
134
+ data = csv,
135
+ file_name=disease+'.csv',
136
+ mime='text/csv',
137
+ )
138
+
139
+ st.markdown('See the NIH GARD page for ['+disease+'](https://rarediseases.info.nih.gov/diseases/'+str(re.sub('GARD:|0','',gardID))+'/'+str('-'.join(disease.split()))+')')
140
+
141
+ fig = epi_sankey(sankey_data,disease)
142
+ st.plotly_chart(fig, use_container_width=True)
143
+
144
+ if 'IDS' in list(df.columns):
145
+ st.markdown('''COLUMNS: \\
146
+ - PROB_OF_EPI: Probability that the paper is an epidemiologic study based on its abstract. \\
147
+ - IsEpi: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \\
148
+ - DIS: Rare disease terms or synonyms identified in the abstract from the GARD Dictionary
149
+ - IDS: GARD IDs identified in the abstract from the GARD Dictionary \\
150
+ - EPI: Epidemiology Types are the metrics used to estimate disease burden such as "incidence", "prevalence rate", or "occurrence"
151
+ - STAT: Epidemiology Rates describe how many people are afflicted by a disease.
152
+ - DATE: The dates when the epidemiologic studies were conducted
153
+ - LOC: Where the epidemiologic studies were conducted.
154
+ - SEX: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population
155
+ - ETHN: Ethnicities, races, and nationalities of those represented in the epidemiologic study.
156
+ ''')
157
+ else:
158
+ st.subheader("Categories of Results")
159
+ st.markdown(" - **PROB_OF_EPI**: Probability that the paper is an epidemiologic study based on its abstract. \n - **IsEpi**: If it is an epidemiologic study (If PROB_OF_EPI >0.5) \n - **EPI**: Epidemiology Types are the metrics used to estimate disease burden such as 'incidence', 'prevalence rate', or 'occurrence' \n - **STAT**: Epidemiology Rates describe how many people are afflicted by a disease. \n - **DATE**: The dates when the epidemiologic studies were conducted \n - **LOC**: Where the epidemiologic studies were conducted. \n - **SEX**: The biological sexes mentioned in the abstract. Useful for diseases that disproportionately affect one sex over the other or may provide context to composition of the study population \n - **ETHN**: Ethnicities, races, and nationalities of those represented in the epidemiologic study.")
160
+ #st.dataframe(data=None, width=None, height=None)