### LIBRARIES ### # # Data import numpy as np import pandas as pd import json from math import floor # Robustness Gym and Analysis import robustnessgym as rg from gensim.models.doc2vec import Doc2Vec from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score import nltk nltk.download('punkt') #make sure that punkt is downloaded # App & Visualization import streamlit as st import altair as alt # utils from interactive_model_cards import utils as ut from interactive_model_cards import app_layout as al from random import sample from PIL import Image ### LOADING DATA ### # model card data @st.experimental_memo def load_model_card(): with open("./assets/data/text_explainer/model_card.json") as f: mc_text = json.load(f) return mc_text # pre-computed robusntess gym dev bench # @st.experimental_singleton @st.cache(allow_output_mutation=True) def load_data(): # load dev bench devBench = rg.DevBench.load("./assets/data/rg/sst_db.devbench") return devBench # load model @st.experimental_singleton def load_model(): model = rg.HuggingfaceModel( "distilbert-base-uncased-finetuned-sst-2-english", is_classifier=True ) return model #load pre-computed embedding def load_embedding(): embedding = pd.read_pickle("./assets/models/sst_vectors.pkl") return embedding #load doc2vec model @st.experimental_singleton def load_doc2vec(): doc2vec = Doc2Vec.load("./assets/models/sst_train.doc2vec") return(doc2vec) # @st.experimental_memo def load_examples(): with open("./assets/data/user_data/example_sentence.json") as f: examples = json.load(f) return examples # loading the dataset def load_basic(): # load data devBench = load_data() # load model model = load_model() #protected_classes protected_classes = json.load(open("./assets/data/protected_terms.json")) return devBench, model, protected_classes @st.experimental_singleton def load_title(): img = Image.open("./assets/img/title.png") return(img) if __name__ == "__main__": ### STREAMLIT APP CONGFIG ### st.set_page_config(layout="wide", page_title="Interactive Model Card") # import custom styling ut.init_style() ### LOAD DATA AND SESSION VARIABLES ### # ******* loading the mode and the data with st.spinner(): sst_db, model,protected_classes = load_basic() embedding = load_embedding() doc2vec = load_doc2vec() # load example sentences sentence_examples = load_examples() # ******* session state variables if "user_data" not in st.session_state: st.session_state["user_data"] = pd.DataFrame() if "example_sent" not in st.session_state: st.session_state["example_sent"] = "I like you. I love you" if "quant_ex" not in st.session_state: st.session_state["quant_ex"] = {"Overall Performance": sst_db.metrics["model"]} if "selected_slice" not in st.session_state: st.session_state["selected_slice"] = None if "slice_terms" not in st.session_state: st.session_state["slice_terms"] = {} if "embedding" not in st.session_state: st.session_state["embedding"] = embedding if "protected_class" not in st.session_state: st.session_state["protected_class"] = protected_classes ### STREAMLIT APP LAYOUT### # ******* MODEL CARD PANEL ******* #st.sidebar.title("Interactive Model Card") img = load_title() st.sidebar.image(img,width=400) st.sidebar.warning("Data is not permanently collected or stored from your interactions, but is temporarily cached during usage.") # load model card data errors = st.sidebar.checkbox("Show Warnings", value=True) model_card = load_model_card() al.model_card_panel(model_card,errors) lcol, rcol = st.columns([4, 8]) # ******* USER EXAMPLE DATA PANEL ******* st.markdown("---") with lcol: # Choose waht to show for the qunatiative analysis. st.write("""