import gradio as gr import pandas as pd import joblib from huggingface_hub import hf_hub_download # Download model from Hugging Face model_path = hf_hub_download(repo_id="abhishek/autotrain-iris-xgboost", filename="model.joblib") model = joblib.load(model_path) # Prediction function def predict(sepal_length, sepal_width, petal_length, petal_width): input_df = pd.DataFrame([{ "feat_SepalLengthCm": sepal_length, "feat_SepalWidthCm": sepal_width, "feat_PetalLengthCm": petal_length, "feat_PetalWidthCm": petal_width }]) prediction = model.predict(input_df)[0] return prediction # Gradio interface iface = gr.Interface( fn=predict, inputs=[ gr.Slider(4.0, 8.0, label="Sepal Length (cm)"), gr.Slider(2.0, 5.0, label="Sepal Width (cm)"), gr.Slider(1.0, 7.0, label="Petal Length (cm)"), gr.Slider(0.1, 3.0, label="Petal Width (cm)") ], outputs="text", title="Iris Flower Classifier 🌸" ) iface.launch()