# Multi-HMR # Copyright (c) 2024-present NAVER Corp. # CC BY-NC-SA 4.0 license import torch def rebatch(idx_0, idx_det): # Rebuild the batch dimension : (N, ...) is turned into (batch_dim, nb_max, ...) # with zero padding for batch elements with fewer people. values, counts = torch.unique(idx_0, sorted=True, return_counts=True) #print(idx_0) if not len(values) == values.max() + 1: # Abnormal jumps in the idx_0: some images in the batch did not produce any inputs. jumps = (values - torch.concat([torch.Tensor([-1]).to(values.device), values])[:-1]) - 1 offsets = torch.cumsum(jumps.int(), dim=0) # Correcting idx_0 to account for missing batch elements # This is actually wrong: in the case where we have 2 consecutive images without ppl, this will fail. # But two consecutive jumps has proba so close to 0 that I consider it 'impossible'. offsets = [c * [o] for o, c in [(offsets[i], counts[i]) for i in range(offsets.shape[0])]] offsets = torch.Tensor([e for o in offsets for e in o]).to(jumps.device).int() idx_0 = idx_0 - offsets idx_det_0 = idx_det[0] - offsets else: idx_det_0 = idx_det[0] return counts, idx_det_0 def pad(x, padlen, dim): assert x.shape[dim] <= padlen, "Incoherent dimensions" if not dim == 1: raise NotImplementedError("Not implemented for this dim.") padded = torch.concat([x, x.new_zeros((x.shape[0], padlen - x.shape[dim],) + x.shape[2:])], dim=dim) mask = torch.concat([x.new_ones((x.shape[0], x.shape[dim])), x.new_zeros((x.shape[0], padlen - x.shape[dim]))], dim=dim) return padded, mask def pad_to_max(x_central, counts): """Pad so that each batch images has the same number of x_central queries. Mask is used in attention to remove the fact queries. """ max_count = counts.max() xlist = torch.split(x_central, tuple(counts), dim=0) xlist2 = [x.unsqueeze(0) for x in xlist] xlist3 = [pad(x, max_count, dim=1) for x in xlist2] xlist4, mask = [x[0] for x in xlist3], [x[1] for x in xlist3] x_central, mask = torch.concat(xlist4, dim=0), torch.concat(mask, dim=0) return x_central, mask