import io import matplotlib.pyplot as plt import requests import streamlit as st import torch from PIL import Image from transformers import DetrFeatureExtractor, DetrForObjectDetection # colors for visualization COLORS = [ [0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933], ] @st.cache(allow_output_mutation=True) def get_hf_components(model_name_or_path): feature_extractor = DetrFeatureExtractor.from_pretrained(model_name_or_path) model = DetrForObjectDetection.from_pretrained(model_name_or_path) model.eval() return feature_extractor, model @st.cache def get_img_from_url(url): return Image.open(requests.get(url, stream=True).raw) def fig2img(fig): buf = io.BytesIO() fig.savefig(buf) buf.seek(0) img = Image.open(buf) return img def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None): keep = output_dict["scores"] > threshold boxes = output_dict["boxes"][keep].tolist() scores = output_dict["scores"][keep].tolist() labels = output_dict["labels"][keep].tolist() if id2label is not None: labels = [id2label[x] for x in labels] plt.figure(figsize=(16, 10)) plt.imshow(pil_img) ax = plt.gca() colors = COLORS * 100 for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3)) ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5)) plt.axis("off") return fig2img(plt.gcf()) def make_prediction(img, feature_extractor, model): inputs = feature_extractor(img, return_tensors="pt") outputs = model(**inputs) img_size = torch.tensor([tuple(reversed(img.size))]) processed_outputs = feature_extractor.post_process(outputs, img_size) return processed_outputs[0] def main(): option = st.selectbox("Which model should we use?", ("facebook/detr-resnet-50", "facebook/detr-resnet-101")) feature_extractor, model = get_hf_components(option) url = st.text_input("URL to some image", "http://images.cocodataset.org/val2017/000000039769.jpg") img = get_img_from_url(url) processed_outputs = make_prediction(img, feature_extractor, model) threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.7) viz_img = visualize_prediction(img, processed_outputs, threshold, model.config.id2label) st.image(viz_img) if __name__ == '__main__': main()