import gradio as gr import torch from huggingface_hub import hf_hub_download from torch import nn from torchvision.utils import save_image class Generator(nn.Module): def __init__(self, nc=4, nz=100, ngf=64): super(Generator, self).__init__() self.network = nn.Sequential( nn.ConvTranspose2d(nz, ngf * 4, 3, 1, 0, bias=False), nn.BatchNorm2d(ngf * 4), nn.ReLU(True), nn.ConvTranspose2d(ngf * 4, ngf * 2, 3, 2, 1, bias=False), nn.BatchNorm2d(ngf * 2), nn.ReLU(True), nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 0, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True), nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), nn.Tanh(), ) def forward(self, input): output = self.network(input) return output model = Generator() weights_path = hf_hub_download('nateraw/cryptopunks-gan', 'generator.pth') model.load_state_dict(torch.load(weights_path, map_location=torch.device('cpu'))) def predict(text): z = torch.randn(64, 100, 1, 1) punks = model(z) save_image(punks, "punks.png", normalize=True) return 'punks.png' gr.Interface( predict, inputs="text", outputs="image", title="InfiniPunks", description="These CryptoPunks do not exist.", article="
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks | Github Repo
", ).launch()