from pytorch_caney.loss.utils import to_tensor import unittest import numpy as np import torch class TestToTensorFunction(unittest.TestCase): def test_tensor_input(self): tensor = torch.tensor([1, 2, 3]) result = to_tensor(tensor) self.assertTrue(torch.equal(result, tensor)) def test_tensor_input_with_dtype(self): tensor = torch.tensor([1, 2, 3]) result = to_tensor(tensor, dtype=torch.float32) self.assertTrue(torch.equal(result, tensor.float())) def test_numpy_array_input(self): numpy_array = np.array([1, 2, 3]) expected_tensor = torch.tensor([1, 2, 3]) result = to_tensor(numpy_array) self.assertTrue(torch.equal(result, expected_tensor)) def test_numpy_array_input_with_dtype(self): numpy_array = np.array([1, 2, 3]) expected_tensor = torch.tensor([1, 2, 3], dtype=torch.float32) result = to_tensor(numpy_array, dtype=torch.float32) self.assertTrue(torch.equal(result, expected_tensor)) def test_list_input(self): input_list = [1, 2, 3] expected_tensor = torch.tensor([1, 2, 3]) result = to_tensor(input_list) self.assertTrue(torch.equal(result, expected_tensor)) def test_list_input_with_dtype(self): input_list = [1, 2, 3] expected_tensor = torch.tensor([1, 2, 3], dtype=torch.float32) result = to_tensor(input_list, dtype=torch.float32) self.assertTrue(torch.equal(result, expected_tensor)) if __name__ == '__main__': unittest.main()