File size: 6,835 Bytes
ab687e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import numpy as np

import torch
import joblib
import numpy as np

import torchvision.transforms as T
import sys

sys.path.append('pytorch-caney')
# from pytorch_caney.models.mim.mim import build_mim_model


class Transform:
    """
    torchvision transform which transforms the input imagery into
    addition to generating a MiM mask
    """

    def __init__(self, config):

        self.transform_img = \
            T.Compose([
                T.ToTensor(),
                T.Resize((config.DATA.IMG_SIZE, config.DATA.IMG_SIZE)),
            ])

        model_patch_size = config.MODEL.SWINV2.PATCH_SIZE

        self.mask_generator = SimmimMaskGenerator(
            input_size=config.DATA.IMG_SIZE,
            mask_patch_size=config.DATA.MASK_PATCH_SIZE,
            model_patch_size=model_patch_size,
            mask_ratio=config.DATA.MASK_RATIO,
        )

    def __call__(self, img):

        img = self.transform_img(img)
        mask = self.mask_generator()

        return img, mask


class SimmimMaskGenerator:
    """
    Generates the masks for masked-image-modeling
    """
    def __init__(self,
                 input_size=192,
                 mask_patch_size=32,
                 model_patch_size=4,
                 mask_ratio=0.6):
        self.input_size = input_size
        self.mask_patch_size = mask_patch_size
        self.model_patch_size = model_patch_size
        self.mask_ratio = mask_ratio

        assert self.input_size % self.mask_patch_size == 0
        assert self.mask_patch_size % self.model_patch_size == 0

        self.rand_size = self.input_size // self.mask_patch_size
        self.scale = self.mask_patch_size // self.model_patch_size

        self.token_count = self.rand_size ** 2
        self.mask_count = int(np.ceil(self.token_count * self.mask_ratio))

    def __call__(self):
        mask = self.make_simmim_mask(self.token_count, self.mask_count,
                                self.rand_size, self.scale)
        mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1)
        return mask
    
    @staticmethod
    def make_simmim_mask(token_count, mask_count, rand_size, scale):
        """JIT-compiled random mask generation

        Args:
            token_count
            mask_count
            rand_size
            scale

        Returns:
            mask
        """
        mask_idx = np.random.permutation(token_count)[:mask_count]
        mask = np.zeros(token_count, dtype=np.int64)
        mask[mask_idx] = 1
        mask = mask.reshape((rand_size, rand_size))
        return mask


class InferenceModel(object):

    def __init__(self):
        self.checkpoint_path = 'ckpt_epoch_800.pth'
        self.config_path = 'simmim_pretrain__satnet_swinv2_base__img192_window12__800ep_v3_no_norm.config.sav'
        self.architecture_path = 'model.sav'

        self.config = joblib.load(self.config_path)
        self.model = joblib.load(self.architecture_path)
        self.load_checkpoint()

        self.transform = Transform(self.config)


    def load_checkpoint(self):


        checkpoint = torch.load(self.checkpoint_path, map_location='cpu')

        # re-map keys due to name change (only for loading provided models)
        rpe_mlp_keys = [k for k in checkpoint['model'].keys() if "rpe_mlp" in k]

        for k in rpe_mlp_keys:

            checkpoint['model'][k.replace(
                'rpe_mlp', 'cpb_mlp')] = checkpoint['model'].pop(k)

        msg = self.model.load_state_dict(checkpoint['model'], strict=False)

        print(msg)

        del checkpoint

        torch.cuda.empty_cache()

    @staticmethod
    def minmax_norm(img_arr):
        arr_min = img_arr.min()
        arr_max = img_arr.max()
        img_arr_scaled = (img_arr - arr_min) / (arr_max - arr_min)
        img_arr_scaled = img_arr_scaled * 255
        img_arr_scaled = img_arr_scaled.astype(np.uint8)
        return img_arr_scaled

    # -------------------------------------------------------------------------
    # load_selected_image
    # -------------------------------------------------------------------------
    def preprocess(self, image):

        image, mask = self.transform(image)

        image = image.unsqueeze(0)
    
        mask = torch.tensor(mask).unsqueeze(0)

        print(image.size())
        print(mask.shape)

        return image, mask

    # -------------------------------------------------------------------------
    # load_selected_image
    # -------------------------------------------------------------------------
    def predict(self, image, mask):

        with torch.no_grad():
    
            logits = self.model.encoder(image, mask)
    
            image_recon = self.model.decoder(logits)
        
        image_recon = image_recon.numpy()[0, :, :, :]

        return image_recon

    # -------------------------------------------------------------------------
    # load_selected_image
    # -------------------------------------------------------------------------
    @staticmethod
    def process_mask(mask):
        mask = mask.repeat_interleave(4, 1).repeat_interleave(4, 2).unsqueeze(1).contiguous()
        mask = mask[0, 0, :, :]
        mask = np.stack([mask, mask, mask], axis=-1)
        return mask

    # -------------------------------------------------------------------------
    # load_selected_image
    # -------------------------------------------------------------------------
    def infer(self, image):

        image, mask = self.preprocess(image)

        img_recon = self.predict(image, mask)

        mask = self.process_mask(mask)

        img_normed = self.minmax_norm(image.numpy()[0, :, :, :])

        print(img_normed.shape)
        rgb_image = np.stack((img_normed[0, :, :],
                            img_normed[3, :, :],
                            img_normed[2, :, :]),
                            axis=-1)

        img_recon = self.minmax_norm(img_recon)
        rgb_image_recon = np.stack((img_recon[0, :, :],
                                    img_recon[3, :, :],
                                    img_recon[2, :, :]),
                                    axis=-1)

        rgb_masked = np.where(mask == 0, rgb_image, rgb_image_recon)
        rgb_image_masked = np.where(mask == 1, 0, rgb_image)
        rgb_recon_masked = rgb_masked# self.minmax_norm(rgb_masked)

        return rgb_image, rgb_image_masked, rgb_recon_masked


def infer(array_input: np.ndarray) -> tuple[np.ndarray, np.ndarray]:

    masked_input = np.random.rand(256, 256, 3)

    output = np.random.rand(256, 256, 3)

    return masked_input, output

if __name__ == '__main__':
    inferenceModel = InferenceModel()

    image = np.load('data/images/sv-demo-mod09ga-11.npy')
    print(image.shape)
    image = np.moveaxis(image, 0, 2)
    print(image.shape)

    inference = inferenceModel.infer(image)