Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import pickle | |
from sklearn.preprocessing import LabelEncoder, StandardScaler, OneHotEncoder | |
from sklearn.compose import ColumnTransformer | |
from sklearn.pipeline import Pipeline | |
from sklearn.neighbors import KNeighborsClassifier | |
# Load the saved model and encoders | |
with open('model_penguin_706.pkl', 'rb') as file: | |
model, species_encoder, island_encoder, sex_encoder = pickle.load(file) | |
# Create the Streamlit app | |
st.title('Penguin Species Prediction') | |
# Input fields for user data | |
island = st.selectbox('Island', ['Torgersen', 'Biscoe', 'Dream']) | |
culmen_length_mm = st.number_input('Culmen Length (mm)', min_value=0.0) | |
culmen_depth_mm = st.number_input('Culmen Depth (mm)', min_value=0.0) | |
flipper_length_mm = st.number_input('Flipper Length (mm)', min_value=0.0) | |
body_mass_g = st.number_input('Body Mass (g)', min_value=0.0) | |
sex = st.selectbox('Sex', ['MALE', 'FEMALE']) | |
# Create a button to trigger prediction | |
if st.button('Predict Species'): | |
# Create a DataFrame from user inputs | |
x_new = pd.DataFrame({ | |
'island': [island], | |
'culmen_length_mm': [culmen_length_mm], | |
'culmen_depth_mm': [culmen_depth_mm], | |
'flipper_length_mm': [flipper_length_mm], | |
'body_mass_g': [body_mass_g], | |
'sex': [sex] | |
}) | |
# Make the prediction | |
y_pred_new = model.predict(x_new) | |
# Inverse transform the prediction | |
result = species_encoder.inverse_transform(y_pred_new) | |
# Display the prediction | |
st.write('Predicted Species:', result[0]) |