import os import tensorflow as tf import gradio as gr import numpy as np from PIL import Image # Define the root directory model = tf.keras.models.load_model("gender_resnet50.h5") def predict_gender(image): image = image.resize((224, 224)) image = tf.keras.utils.img_to_array(image) image = image / 255.0 pred_arr = np.expand_dims(image, axis=0) result = model.predict(pred_arr) prob = result[0] text_res = "Male" if prob >= 0.5 else "Female" return text_res # Create the Gradio interface interface = gr.Interface(fn=predict_gender, inputs=gr.Image(type="pil"), outputs="text") # Launch the Gradio interface interface.launch(share=True)