import gradio as gr import numpy as np import random import os from pathlib import Path # import spaces #[uncomment to use ZeroGPU] from diffusers import DiffusionPipeline, StableDiffusionPipeline, schedulers import torch MODEL_REPO_ID = os.environ.get('MODEL_REPO_ID', 'myxlmynx/cyberrealistic_classic40') MODEL_REPO_LOCAL = os.environ.get('MODEL_REPO_LOCAL', '') MODEL_REPO_NAME = os.environ.get('MODEL_REPO_NAME', 'CyberRealistic Classic 4.0') device = "cuda" if torch.cuda.is_available() else "cpu" print("Running on " + device) if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 print("Loading " + MODEL_REPO_ID) if MODEL_REPO_LOCAL and Path(MODEL_REPO_LOCAL).is_file(): pipe = StableDiffusionPipeline.from_single_file(MODEL_REPO_LOCAL, torch_dtype=torch_dtype) else: pipe = DiffusionPipeline.from_pretrained(MODEL_REPO_ID, torch_dtype=torch_dtype) extra_inference_parameters = {} # add accel LoRA to boost generation speed pipe.load_lora_weights("wangfuyun/PCM_Weights", subfolder='sd15', weight_name='pcm_sd15_smallcfg_2step_converted.safetensors', adapter_name='pcm_smallcfg_2step') pipe.set_adapters(['pcm_smallcfg_2step'], adapter_weights=[1.0]) pipe.fuse_lora() # for very low step counts with PCM #pipe.scheduler = schedulers.DDIMScheduler(timestep_spacing='trailing', # clip_sample=False, set_alpha_to_one=False) pipe.scheduler = schedulers.TCDScheduler() extra_inference_parameters['eta'] = 0.3 #pipe.scheduler = schedulers.LCMScheduler() #pipe.scheduler = schedulers.EulerAncestralDiscreteScheduler() # lib default will fry the image default_guidance_scale = 1 pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MIN_IMAGE_SIZE = 128 MAX_IMAGE_SIZE = 1024 # @spaces.GPU #[uncomment to use ZeroGPU] def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) if guidance_scale == 0: guidance_scale = default_guidance_scale image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, **extra_inference_parameters ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo_device: with gr.Column(elem_id="col-container"): gr.Markdown("# " + MODEL_REPO_NAME + " - on " + device.upper()) if device == 'cpu': gr.Markdown("Note: running on CPU, generation will be very slow. Expect at least" + " a minute for minimal parameters (512x512 image, guidance <= 1, <=4 steps).\n" + "It's also on a single queue, so clone this space for experimenting with it.") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=768, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=3, ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) demo_inference = gr.load(MODEL_REPO_ID, title=MODEL_REPO_NAME, src='models') demo = gr.TabbedInterface([demo_inference, demo_device], ["Inference API", device.upper()]) if __name__ == "__main__": demo.launch()