|
import numpy as np |
|
|
|
|
|
def cxywh2xywh(cx, cy, w, h): |
|
""" CxCyWH format to XYWH format conversion |
|
""" |
|
x = cx - w / 2 |
|
y = cy - h / 2 |
|
return x, y, w, h |
|
|
|
|
|
def cxywh2ltrb(cx, cy, w, h): |
|
"""CxCyWH format to LeftRightTopBottom format |
|
""" |
|
l = cx - w / 2 |
|
t = cy - h / 2 |
|
r = cx + w / 2 |
|
b = cy + h / 2 |
|
return l, t, r, b |
|
|
|
|
|
def iou(ba, bb): |
|
"""Calculate Intersection-Over-Union |
|
|
|
Args: |
|
ba (tuple): CxCyWH format with score |
|
bb (tuple): CxCyWH format with score |
|
|
|
Returns: |
|
IoU with size of length of given box |
|
""" |
|
a_l, a_t, a_r, a_b, sa = ba |
|
b_l, b_t, b_r, b_b, sb = bb |
|
|
|
x1 = np.maximum(a_l, b_l) |
|
y1 = np.maximum(a_t, b_t) |
|
x2 = np.minimum(a_r, b_r) |
|
y2 = np.minimum(a_b, b_b) |
|
w = np.maximum(0, x2 - x1) |
|
h = np.maximum(0, y2 - y1) |
|
intersec = w * h |
|
iou = (intersec) / (sa + sb - intersec) |
|
return iou.squeeze() |
|
|
|
|
|
def nms(cx, cy, w, h, s, iou_thresh=0.3): |
|
"""Bounding box Non-maximum Suppression |
|
|
|
Args: |
|
cx, cy, w, h, s: CxCyWH Format with score boxes |
|
iou_thresh (float, optional): IoU threshold. Defaults to 0.3. |
|
|
|
Returns: |
|
res: indexes of the selected boxes |
|
""" |
|
l, t, r, b = cxywh2ltrb(cx, cy, w, h) |
|
areas = w * h |
|
res = [] |
|
sort_ind = np.argsort(s, axis=-1)[::-1] |
|
while sort_ind.shape[0] > 0: |
|
i = sort_ind[0] |
|
res.append(i) |
|
|
|
_iou = iou((l[i], t[i], r[i], b[i], areas[i]), |
|
(l[sort_ind[1:]], t[sort_ind[1:]], |
|
r[sort_ind[1:]], b[sort_ind[1:]], areas[sort_ind[1:]])) |
|
sel_ind = np.where(_iou <= iou_thresh)[0] |
|
sort_ind = sort_ind[sel_ind + 1] |
|
return res |
|
|
|
|
|
def filter_nonpos(boxes, agnostic_ratio=0.5, class_ratio=0.7): |
|
"""filter out insignificant boxes |
|
|
|
Args: |
|
boxes (list of records): returned query to be filtered |
|
""" |
|
ret = [] |
|
labelwise = {} |
|
for _id, cx, cy, w, h, label, logit, is_selected, _ in boxes: |
|
if label not in labelwise: |
|
labelwise[label] = [] |
|
labelwise[label].append(logit) |
|
labelwise = {l: max(s) for l, s in labelwise.items()} |
|
agnostic = max([v for _, v in labelwise.items()]) |
|
for b in boxes: |
|
_id, cx, cy, w, h, label, logit, is_selected, _ = b |
|
if logit > class_ratio * labelwise[label] \ |
|
and logit > agnostic_ratio * agnostic: |
|
ret.append(b) |
|
return ret |
|
|
|
|
|
def postprocess(matches, prompt_labels, img_matches=None): |
|
meta = [] |
|
boxes_w_img = [] |
|
matches_ = {m['img_id']: m for m in matches} |
|
if img_matches is not None: |
|
img_matches_ = {m['img_id']: m for m in img_matches} |
|
for k in matches_.keys(): |
|
m = matches_[k] |
|
boxes = [] |
|
boxes += list(map(list, zip(m['box_id'], m['cx'], m['cy'], m['w'], m['h'], |
|
[prompt_labels[int(l)] |
|
for l in m['label']], |
|
m['logit'], [1] * |
|
len(m['box_id']), |
|
list(np.array(m['cls_emb']))))) |
|
if img_matches is not None and k in img_matches_: |
|
img_m = img_matches_[k] |
|
|
|
boxes += [i for i in map(list, zip(img_m['box_id'], img_m['cx'], img_m['cy'], img_m['w'], img_m['h'], |
|
[prompt_labels[int( |
|
l)] for l in img_m['label']], img_m['logit'], |
|
[0] * len(img_m['box_id']), list(np.array(img_m['cls_emb'])))) |
|
if i[0] not in [b[0] for b in boxes]] |
|
else: |
|
img_m = None |
|
|
|
for b in boxes: |
|
meta.append(b[0]) |
|
|
|
|
|
boxes = filter_nonpos( |
|
boxes, agnostic_ratio=0.4, class_ratio=0.7) |
|
|
|
|
|
cx, cy, w, h, s = list(map(lambda x: np.array(x), |
|
list(zip(*[(*b[1:5], b[6]) for b in boxes])))) |
|
ind = nms(cx, cy, w, h, s, 0.3) |
|
boxes = [boxes[i] for i in ind] |
|
if img_m is not None: |
|
img_score = img_m['img_score'] if img_matches is not None else m['img_score'] |
|
boxes_w_img.append( |
|
(m["img_id"], m["img_url"], m["img_w"], m["img_h"], img_score, boxes)) |
|
return boxes_w_img, meta |
|
|