import base64 from streamlit_extras.add_vertical_space import add_vertical_space from streamlit_extras.card import card from streamlit_extras.colored_header import colored_header from streamlit_extras.mention import mention from streamlit_extras.tags import tagger_component from logger import logger import os import streamlit as st from auth0_component import login_button from backend.constants.variables import JUMP_QUERY_ASK, USER_INFO, USER_NAME, DIVIDER_HTML, DIVIDER_THIN_HTML from streamlit_extras.let_it_rain import rain def render_home(): render_home_header() # st.divider() # st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True) add_vertical_space(5) render_home_content() # st.divider() st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True) render_home_footer() def render_home_header(): logger.info("render home header") st.header("ChatData - Your Intelligent Assistant") st.markdown(DIVIDER_THIN_HTML, unsafe_allow_html=True) st.markdown("> [ChatData](https://github.com/myscale/ChatData) \ is developed by [MyScale](https://myscale.com/), \ it's an integration of [LangChain](https://www.langchain.com/) \ and [MyScaleDB](https://github.com/myscale/myscaledb)") tagger_component( "Keywords:", ["MyScaleDB", "LangChain", "VectorSearch", "ChatBot", "GPT", "arxiv", "wikipedia", "Personal Knowledge Base 📚"], color_name=["darkslateblue", "green", "orange", "darkslategrey", "red", "crimson", "darkcyan", "darkgrey"], ) text, col1, col2, col3, _ = st.columns([1, 1, 1, 1, 4]) with text: st.markdown("Related:") with col1.container(): mention( label="streamlit", icon="streamlit", url="https://streamlit.io/", write=True ) with col2.container(): mention( label="langchain", icon="🦜🔗", url="https://www.langchain.com/", write=True ) with col3.container(): mention( label="streamlit-extras", icon="🪢", url="https://github.com/arnaudmiribel/streamlit-extras", write=True ) def _render_self_query_chain_content(): col1, col2 = st.columns([1, 1], gap='large') with col1.container(): st.image(image='./assets/home_page_background_1.png', caption=None, width=None, use_column_width=True, clamp=False, channels="RGB", output_format="PNG") with col2.container(): st.header("VectorSearch & SelfQuery with Sources") st.info("In this sample, you will learn how **LangChain** integrates with **MyScaleDB**.") st.markdown("""This example demonstrates two methods for integrating MyScale into LangChain: [Vector SQL](https://api.python.langchain.com/en/latest/sql/langchain_experimental.sql.vector_sql.VectorSQLDatabaseChain.html) and [Self-querying retriever](https://python.langchain.com/v0.2/docs/integrations/retrievers/self_query/myscale_self_query/). For each method, you can choose one of the following options: 1. `Retrieve from MyScaleDB ➡️` - The LLM (GPT) converts user queries into SQL statements with vector search, executes these searches in MyScaleDB, and retrieves relevant content. 2. `Retrieve and answer with LLM ➡️` - After retrieving relevant content from MyScaleDB, the user query along with the retrieved content is sent to the LLM (GPT), which then provides a comprehensive answer.""") add_vertical_space(3) _, middle, _ = st.columns([2, 1, 2], gap='small') with middle.container(): st.session_state[JUMP_QUERY_ASK] = st.button("Try sample", use_container_width=False, type="secondary") def _render_chat_bot_content(): col1, col2 = st.columns(2, gap='large') with col1.container(): st.image(image='./assets/home_page_background_2.png', caption=None, width=None, use_column_width=True, clamp=False, channels="RGB", output_format="PNG") with col2.container(): st.header("Chat Bot") st.info("Now you can try our chatbot, this chatbot is built with MyScale and LangChain.") st.markdown("- You need to log in. We use `user_name` to identify each customer.") st.markdown("- You can upload your own PDF files and build your own knowledge base. \ (This is just a sample application. Please do not upload important or confidential files.)") st.markdown("- A default session will be assigned as your initial chat session. \ You can create and switch to other sessions to jump between different chat conversations.") add_vertical_space(1) _, middle, _ = st.columns([1, 2, 1], gap='small') with middle.container(): if USER_NAME not in st.session_state: login_button(clientId=os.environ["AUTH0_CLIENT_ID"], domain=os.environ["AUTH0_DOMAIN"], key="auth0") # if user_info: # user_name = user_info.get("nickname", "default") + "_" + user_info.get("email", "null") # st.session_state[USER_NAME] = user_name # print(user_info) def render_home_content(): logger.info("render home content") _render_self_query_chain_content() add_vertical_space(3) _render_chat_bot_content() def render_home_footer(): logger.info("render home footer") st.write( "Please follow us on [Twitter](https://x.com/myscaledb) and [Discord](https://discord.gg/D2qpkqc4Jq)!" ) st.write( "For more details, please refer to [our repository on GitHub](https://github.com/myscale/ChatData)!") st.write("Our [privacy policy](https://myscale.com/privacy/), [terms of service](https://myscale.com/terms/)") # st.write( # "Recommended to use the standalone version of Chat-Data, " # "available [here](https://myscale-chatdata.hf.space/)." # ) if st.session_state.auth0 is not None: st.session_state[USER_INFO] = dict(st.session_state.auth0) if 'email' in st.session_state[USER_INFO]: email = st.session_state[USER_INFO]["email"] else: email = f"{st.session_state[USER_INFO]['nickname']}@{st.session_state[USER_INFO]['sub']}" st.session_state["user_name"] = email del st.session_state.auth0 st.rerun() if st.session_state.jump_query_ask: st.rerun()