Spaces:
Running
Running
Fangrui Liu
commited on
Commit
·
45180a0
1
Parent(s):
d5a4cb4
add wikipedia
Browse files- app.py +235 -132
- callbacks/arxiv_callbacks.py +1 -1
- chains/arxiv_chains.py +49 -5
- prompts/arxiv_prompt.py +4 -4
app.py
CHANGED
@@ -1,3 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
2 |
import pandas as pd
|
3 |
from os import environ
|
@@ -6,34 +28,156 @@ import datetime
|
|
6 |
environ['TOKENIZERS_PARALLELISM'] = 'true'
|
7 |
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
|
8 |
|
9 |
-
from langchain.vectorstores import MyScale, MyScaleSettings
|
10 |
-
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
11 |
-
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
12 |
-
from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName
|
13 |
-
from langchain import OpenAI
|
14 |
-
from langchain.chat_models import ChatOpenAI
|
15 |
|
16 |
-
|
17 |
-
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
|
18 |
-
SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
19 |
-
from sqlalchemy import create_engine, MetaData
|
20 |
-
from langchain.chains import LLMChain
|
21 |
|
22 |
-
|
23 |
-
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
|
24 |
-
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
|
30 |
-
ChatDataSQLAskCallBackHandler
|
31 |
-
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
|
32 |
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
def try_eval(x):
|
@@ -55,14 +199,14 @@ def display(dataframe, columns_=None, index=None):
|
|
55 |
st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)
|
56 |
|
57 |
|
58 |
-
|
59 |
-
def build_retriever():
|
60 |
with st.spinner("Loading Model..."):
|
61 |
-
embeddings =
|
62 |
-
|
63 |
-
embed_instruction="Represent the question for retrieving supporting scientific papers: ")
|
64 |
|
65 |
-
|
|
|
|
|
66 |
myscale_connection = {
|
67 |
"host": st.secrets['MYSCALE_HOST'],
|
68 |
"port": st.secrets['MYSCALE_PORT'],
|
@@ -70,69 +214,40 @@ def build_retriever():
|
|
70 |
"password": st.secrets['MYSCALE_PASSWORD'],
|
71 |
}
|
72 |
|
73 |
-
config = MyScaleSettings(**myscale_connection,
|
|
|
|
|
74 |
column_map={
|
75 |
"id": "id",
|
76 |
-
"text": "
|
77 |
-
"vector": "
|
78 |
-
"metadata": "
|
79 |
})
|
80 |
-
doc_search =
|
|
|
81 |
|
82 |
-
with st.spinner("Building Self Query Retriever..."):
|
83 |
-
metadata_field_info = [
|
84 |
-
AttributeInfo(
|
85 |
-
name=VirtualColumnName(name="pubdate"),
|
86 |
-
description="The year the paper is published",
|
87 |
-
type="timestamp",
|
88 |
-
),
|
89 |
-
AttributeInfo(
|
90 |
-
name="authors",
|
91 |
-
description="List of author names",
|
92 |
-
type="list[string]",
|
93 |
-
),
|
94 |
-
AttributeInfo(
|
95 |
-
name="title",
|
96 |
-
description="Title of the paper",
|
97 |
-
type="string",
|
98 |
-
),
|
99 |
-
AttributeInfo(
|
100 |
-
name="categories",
|
101 |
-
description="arxiv categories to this paper",
|
102 |
-
type="list[string]"
|
103 |
-
),
|
104 |
-
AttributeInfo(
|
105 |
-
name="length(categories)",
|
106 |
-
description="length of arxiv categories to this paper",
|
107 |
-
type="int"
|
108 |
-
),
|
109 |
-
]
|
110 |
retriever = SelfQueryRetriever.from_llm(
|
111 |
-
OpenAI(openai_api_key=st.secrets['OPENAI_API_KEY'], temperature=0),
|
112 |
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
|
113 |
-
use_original_query=False)
|
114 |
-
|
115 |
-
|
116 |
-
document_with_metadata_prompt = PromptTemplate(
|
117 |
-
input_variables=["page_content", "id", "title", "ref_id",
|
118 |
-
"authors", "pubdate", "categories"],
|
119 |
-
template="Title for PDF #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}")
|
120 |
|
121 |
COMBINE_PROMPT = ChatPromptTemplate.from_strings(
|
122 |
string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
|
123 |
-
|
124 |
OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
|
125 |
|
126 |
-
with st.spinner('Building QA Chain with Self-query...'):
|
127 |
chain = ArXivQAwithSourcesChain(
|
128 |
retriever=retriever,
|
129 |
combine_documents_chain=ArXivStuffDocumentChain(
|
130 |
llm_chain=LLMChain(
|
131 |
prompt=COMBINE_PROMPT,
|
132 |
-
llm=ChatOpenAI(model_name=
|
133 |
-
|
134 |
),
|
135 |
-
document_prompt=
|
136 |
document_variable_name="summaries",
|
137 |
|
138 |
),
|
@@ -140,23 +255,22 @@ def build_retriever():
|
|
140 |
max_tokens_limit=12000,
|
141 |
)
|
142 |
|
143 |
-
with st.spinner('Building Vector SQL Database Retriever'):
|
144 |
MYSCALE_USER = st.secrets['MYSCALE_USER']
|
145 |
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
|
146 |
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
|
147 |
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
|
148 |
engine = create_engine(
|
149 |
-
f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/
|
150 |
metadata = MetaData(bind=engine)
|
151 |
PROMPT = PromptTemplate(
|
152 |
input_variables=["input", "table_info", "top_k"],
|
153 |
template=_myscale_prompt,
|
154 |
)
|
155 |
-
|
156 |
output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
|
157 |
-
model=
|
158 |
sql_query_chain = VectorSQLDatabaseChain.from_llm(
|
159 |
-
llm=OpenAI(openai_api_key=OPENAI_API_KEY, temperature=0),
|
160 |
prompt=PROMPT,
|
161 |
top_k=10,
|
162 |
return_direct=True,
|
@@ -165,18 +279,18 @@ def build_retriever():
|
|
165 |
native_format=True
|
166 |
)
|
167 |
sql_retriever = VectorSQLDatabaseChainRetriever(
|
168 |
-
sql_db_chain=sql_query_chain, page_content_key="
|
169 |
|
170 |
-
with st.spinner('Building QA Chain with Vector SQL...'):
|
171 |
sql_chain = ArXivQAwithSourcesChain(
|
172 |
retriever=sql_retriever,
|
173 |
combine_documents_chain=ArXivStuffDocumentChain(
|
174 |
llm_chain=LLMChain(
|
175 |
prompt=COMBINE_PROMPT,
|
176 |
-
llm=ChatOpenAI(model_name=
|
177 |
-
|
178 |
),
|
179 |
-
document_prompt=
|
180 |
document_variable_name="summaries",
|
181 |
|
182 |
),
|
@@ -184,48 +298,33 @@ def build_retriever():
|
|
184 |
max_tokens_limit=12000,
|
185 |
)
|
186 |
|
187 |
-
return
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
|
191 |
if 'retriever' not in st.session_state:
|
192 |
-
st.session_state[
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
|
199 |
-
"For example: \n\n"
|
200 |
-
"*If you want to search papers with complex filters*:\n\n"
|
201 |
-
"- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
|
202 |
-
"*If you want to ask questions based on papers in database*:\n\n"
|
203 |
-
"- What is PageRank?\n"
|
204 |
-
"- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
|
205 |
-
"- Introduce some applications of GANs published around 2019.\n"
|
206 |
-
"- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
|
207 |
-
"- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n"
|
208 |
-
"- Is it possible to synthesize room temperature super conductive material?")
|
209 |
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
|
210 |
with tab_sql:
|
211 |
-
|
212 |
-
st.markdown('''```sql
|
213 |
-
CREATE TABLE default.ChatArXiv (
|
214 |
-
`abstract` String,
|
215 |
-
`id` String,
|
216 |
-
`vector` Array(Float32),
|
217 |
-
`metadata` Object('JSON'),
|
218 |
-
`pubdate` DateTime,
|
219 |
-
`title` String,
|
220 |
-
`categories` Array(String),
|
221 |
-
`authors` Array(String),
|
222 |
-
`comment` String,
|
223 |
-
`primary_category` String,
|
224 |
-
VECTOR INDEX vec_idx vector TYPE MSTG('metric_type=Cosine'),
|
225 |
-
CONSTRAINT vec_len CHECK length(vector) = 768)
|
226 |
-
ENGINE = ReplacingMergeTree ORDER BY id
|
227 |
-
```''')
|
228 |
-
|
229 |
st.text_input("Ask a question:", key='query_sql')
|
230 |
cols = st.columns([1, 1, 7])
|
231 |
cols[0].button("Query", key='search_sql')
|
@@ -237,7 +336,7 @@ ENGINE = ReplacingMergeTree ORDER BY id
|
|
237 |
with plc_hldr.expander('Query Log', expanded=True):
|
238 |
callback = ChatDataSQLSearchCallBackHandler()
|
239 |
try:
|
240 |
-
docs = st.session_state.sql_retriever.get_relevant_documents(
|
241 |
st.session_state.query_sql, callbacks=[callback])
|
242 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
243 |
docs = pd.DataFrame(
|
@@ -253,14 +352,16 @@ ENGINE = ReplacingMergeTree ORDER BY id
|
|
253 |
with plc_hldr.expander('Chat Log', expanded=True):
|
254 |
callback = ChatDataSQLAskCallBackHandler()
|
255 |
try:
|
256 |
-
ret = st.session_state.sql_chain(
|
257 |
st.session_state.query_sql, callbacks=[callback])
|
258 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
259 |
st.markdown(
|
260 |
f"### Answer from LLM\n{ret['answer']}\n### References")
|
261 |
docs = ret['sources']
|
262 |
-
docs = pd.DataFrame(
|
263 |
-
|
|
|
|
|
264 |
except Exception as e:
|
265 |
st.write('Oops 😵 Something bad happened...')
|
266 |
raise e
|
@@ -268,7 +369,7 @@ ENGINE = ReplacingMergeTree ORDER BY id
|
|
268 |
|
269 |
with tab_self_query:
|
270 |
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
|
271 |
-
st.dataframe(st.session_state.metadata_columns)
|
272 |
st.text_input("Ask a question:", key='query_self')
|
273 |
cols = st.columns([1, 1, 7])
|
274 |
cols[0].button("Query", key='search_self')
|
@@ -281,13 +382,13 @@ with tab_self_query:
|
|
281 |
call_back = None
|
282 |
callback = ChatDataSelfSearchCallBackHandler()
|
283 |
try:
|
284 |
-
docs = st.session_state.retriever.get_relevant_documents(
|
285 |
st.session_state.query_self, callbacks=[callback])
|
|
|
286 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
287 |
docs = pd.DataFrame(
|
288 |
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
289 |
-
|
290 |
-
display(docs, ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'])
|
291 |
except Exception as e:
|
292 |
st.write('Oops 😵 Something bad happened...')
|
293 |
raise e
|
@@ -299,14 +400,16 @@ with tab_self_query:
|
|
299 |
call_back = None
|
300 |
callback = ChatDataSelfAskCallBackHandler()
|
301 |
try:
|
302 |
-
ret = st.session_state.chain(
|
303 |
st.session_state.query_self, callbacks=[callback])
|
304 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
305 |
st.markdown(
|
306 |
f"### Answer from LLM\n{ret['answer']}\n### References")
|
307 |
docs = ret['sources']
|
308 |
-
docs = pd.DataFrame(
|
309 |
-
|
|
|
|
|
310 |
except Exception as e:
|
311 |
st.write('Oops 😵 Something bad happened...')
|
312 |
raise e
|
|
|
1 |
+
from prompts.arxiv_prompt import combine_prompt_template, _myscale_prompt
|
2 |
+
from callbacks.arxiv_callbacks import ChatDataSelfSearchCallBackHandler, \
|
3 |
+
ChatDataSelfAskCallBackHandler, ChatDataSQLSearchCallBackHandler, \
|
4 |
+
ChatDataSQLAskCallBackHandler
|
5 |
+
from chains.arxiv_chains import ArXivQAwithSourcesChain, ArXivStuffDocumentChain
|
6 |
+
from chains.arxiv_chains import VectorSQLRetrieveCustomOutputParser
|
7 |
+
from langchain_experimental.sql.vector_sql import VectorSQLDatabaseChain
|
8 |
+
from langchain_experimental.retrievers.vector_sql_database import VectorSQLDatabaseChainRetriever
|
9 |
+
from langchain.utilities.sql_database import SQLDatabase
|
10 |
+
from langchain.chains import LLMChain
|
11 |
+
from sqlalchemy import create_engine, MetaData
|
12 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate, \
|
13 |
+
SystemMessagePromptTemplate, HumanMessagePromptTemplate
|
14 |
+
from langchain.prompts.prompt import PromptTemplate
|
15 |
+
from langchain.chat_models import ChatOpenAI
|
16 |
+
from langchain import OpenAI
|
17 |
+
from langchain.chains.query_constructor.base import AttributeInfo, VirtualColumnName
|
18 |
+
from langchain.retrievers.self_query.base import SelfQueryRetriever
|
19 |
+
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
20 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings, SentenceTransformerEmbeddings
|
21 |
+
from langchain.vectorstores import MyScaleSettings
|
22 |
+
from chains.arxiv_chains import MyScaleWithoutMetadataJson
|
23 |
import re
|
24 |
import pandas as pd
|
25 |
from os import environ
|
|
|
28 |
environ['TOKENIZERS_PARALLELISM'] = 'true'
|
29 |
environ['OPENAI_API_BASE'] = st.secrets['OPENAI_API_BASE']
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
st.set_page_config(page_title="ChatData")
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
st.header("ChatData")
|
|
|
|
|
35 |
|
36 |
+
# query_model_name = "gpt-3.5-turbo-instruct"
|
37 |
+
query_model_name = "text-davinci-003"
|
38 |
+
chat_model_name = "gpt-3.5-turbo-16k"
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
+
def hint_arxiv():
|
42 |
+
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
|
43 |
+
"For example: \n\n"
|
44 |
+
"*If you want to search papers with complex filters*:\n\n"
|
45 |
+
"- What is a Bayesian network? Please use articles published later than Feb 2018 and with more than 2 categories and whose title like `computer` and must have `cs.CV` in its category.\n\n"
|
46 |
+
"*If you want to ask questions based on papers in database*:\n\n"
|
47 |
+
"- What is PageRank?\n"
|
48 |
+
"- Did Geoffrey Hinton wrote paper about Capsule Neural Networks?\n"
|
49 |
+
"- Introduce some applications of GANs published around 2019.\n"
|
50 |
+
"- 请根据 2019 年左右的文章介绍一下 GAN 的应用都有哪些\n"
|
51 |
+
"- Veuillez présenter les applications du GAN sur la base des articles autour de 2019 ?\n"
|
52 |
+
"- Is it possible to synthesize room temperature super conductive material?")
|
53 |
|
54 |
+
|
55 |
+
def hint_sql_arxiv():
|
56 |
+
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
|
57 |
+
st.markdown('''```sql
|
58 |
+
CREATE TABLE default.ChatArXiv (
|
59 |
+
`abstract` String,
|
60 |
+
`id` String,
|
61 |
+
`vector` Array(Float32),
|
62 |
+
`metadata` Object('JSON'),
|
63 |
+
`pubdate` DateTime,
|
64 |
+
`title` String,
|
65 |
+
`categories` Array(String),
|
66 |
+
`authors` Array(String),
|
67 |
+
`comment` String,
|
68 |
+
`primary_category` String,
|
69 |
+
VECTOR INDEX vec_idx vector TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
|
70 |
+
CONSTRAINT vec_len CHECK length(vector) = 768)
|
71 |
+
ENGINE = ReplacingMergeTree ORDER BY id
|
72 |
+
```''')
|
73 |
+
|
74 |
+
|
75 |
+
def hint_wiki():
|
76 |
+
st.info("We provides you metadata columns below for query. Please choose a natural expression to describe filters on those columns.\n\n"
|
77 |
+
"For example: \n\n"
|
78 |
+
"- Which company did Elon Musk found?\n"
|
79 |
+
"- What is Iron Gwazi?\n"
|
80 |
+
"- What is a Ring in mathematics?\n"
|
81 |
+
"- 苹果的发源地是那里?\n")
|
82 |
+
|
83 |
+
|
84 |
+
def hint_sql_wiki():
|
85 |
+
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
|
86 |
+
st.markdown('''```sql
|
87 |
+
CREATE TABLE wiki.Wikipedia (
|
88 |
+
`id` String,
|
89 |
+
`title` String,
|
90 |
+
`text` String,
|
91 |
+
`url` String,
|
92 |
+
`wiki_id` UInt64,
|
93 |
+
`views` Float32,
|
94 |
+
`paragraph_id` UInt64,
|
95 |
+
`langs` UInt32,
|
96 |
+
`emb` Array(Float32),
|
97 |
+
VECTOR INDEX vec_idx emb TYPE MSTG('fp16_storage=1', 'metric_type=Cosine', 'disk_mode=3'),
|
98 |
+
CONSTRAINT emb_len CHECK length(emb) = 768)
|
99 |
+
ENGINE = ReplacingMergeTree ORDER BY id
|
100 |
+
```''')
|
101 |
+
|
102 |
+
|
103 |
+
sel_map = {
|
104 |
+
'Wikipedia': {
|
105 |
+
"database": "wiki",
|
106 |
+
"table": "Wikipedia",
|
107 |
+
"hint": hint_wiki,
|
108 |
+
"hint_sql": hint_sql_wiki,
|
109 |
+
"doc_prompt": PromptTemplate(
|
110 |
+
input_variables=["page_content", "url", "title", "ref_id", "views"],
|
111 |
+
template="Title for Doc #{ref_id}: {title}\n\tviews: {views}\n\tcontent: {page_content}\nSOURCE: {url}"),
|
112 |
+
"metadata_cols": [
|
113 |
+
AttributeInfo(
|
114 |
+
name="title",
|
115 |
+
description="title of the wikipedia page",
|
116 |
+
type="string",
|
117 |
+
),
|
118 |
+
AttributeInfo(
|
119 |
+
name="text",
|
120 |
+
description="paragraph from this wiki page",
|
121 |
+
type="string",
|
122 |
+
),
|
123 |
+
AttributeInfo(
|
124 |
+
name="views",
|
125 |
+
description="number of views",
|
126 |
+
type="float"
|
127 |
+
),
|
128 |
+
],
|
129 |
+
"must_have_cols": ['id', 'title', 'url', 'text', 'views'],
|
130 |
+
"vector_col": "emb",
|
131 |
+
"text_col": "text",
|
132 |
+
"metadata_col": "metadata",
|
133 |
+
"emb_model": lambda: SentenceTransformerEmbeddings(
|
134 |
+
model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2',)
|
135 |
+
},
|
136 |
+
'ArXiv Papers': {
|
137 |
+
"database": "default",
|
138 |
+
"table": "ChatArXiv",
|
139 |
+
"hint": hint_arxiv,
|
140 |
+
"hint_sql": hint_sql_arxiv,
|
141 |
+
"doc_prompt": PromptTemplate(
|
142 |
+
input_variables=["page_content", "id", "title", "ref_id",
|
143 |
+
"authors", "pubdate", "categories"],
|
144 |
+
template="Title for Doc #{ref_id}: {title}\n\tAbstract: {page_content}\n\tAuthors: {authors}\n\tDate of Publication: {pubdate}\n\tCategories: {categories}\nSOURCE: {id}"),
|
145 |
+
"metadata_cols": [
|
146 |
+
AttributeInfo(
|
147 |
+
name=VirtualColumnName(name="pubdate"),
|
148 |
+
description="The year the paper is published",
|
149 |
+
type="timestamp",
|
150 |
+
),
|
151 |
+
AttributeInfo(
|
152 |
+
name="authors",
|
153 |
+
description="List of author names",
|
154 |
+
type="list[string]",
|
155 |
+
),
|
156 |
+
AttributeInfo(
|
157 |
+
name="title",
|
158 |
+
description="Title of the paper",
|
159 |
+
type="string",
|
160 |
+
),
|
161 |
+
AttributeInfo(
|
162 |
+
name="categories",
|
163 |
+
description="arxiv categories to this paper",
|
164 |
+
type="list[string]"
|
165 |
+
),
|
166 |
+
AttributeInfo(
|
167 |
+
name="length(categories)",
|
168 |
+
description="length of arxiv categories to this paper",
|
169 |
+
type="int"
|
170 |
+
),
|
171 |
+
],
|
172 |
+
"must_have_cols": ['title', 'id', 'categories', 'abstract', 'authors', 'pubdate'],
|
173 |
+
"vector_col": "vector",
|
174 |
+
"text_col": "abstract",
|
175 |
+
"metadata_col": "metadata",
|
176 |
+
"emb_model": lambda: HuggingFaceInstructEmbeddings(
|
177 |
+
model_name='hkunlp/instructor-xl',
|
178 |
+
embed_instruction="Represent the question for retrieving supporting scientific papers: ")
|
179 |
+
}
|
180 |
+
}
|
181 |
|
182 |
|
183 |
def try_eval(x):
|
|
|
199 |
st.write("Sorry 😵 we didn't find any articles related to your query.\n\nMaybe the LLM is too naughty that does not follow our instruction... \n\nPlease try again and use verbs that may match the datatype.", unsafe_allow_html=True)
|
200 |
|
201 |
|
202 |
+
def build_embedding_model(_sel):
|
|
|
203 |
with st.spinner("Loading Model..."):
|
204 |
+
embeddings = sel_map[_sel]["emb_model"]()
|
205 |
+
return embeddings
|
|
|
206 |
|
207 |
+
|
208 |
+
def build_retriever(_sel):
|
209 |
+
with st.spinner(f"Connecting DB for {_sel}..."):
|
210 |
myscale_connection = {
|
211 |
"host": st.secrets['MYSCALE_HOST'],
|
212 |
"port": st.secrets['MYSCALE_PORT'],
|
|
|
214 |
"password": st.secrets['MYSCALE_PASSWORD'],
|
215 |
}
|
216 |
|
217 |
+
config = MyScaleSettings(**myscale_connection,
|
218 |
+
database=sel_map[_sel]["database"],
|
219 |
+
table=sel_map[_sel]["table"],
|
220 |
column_map={
|
221 |
"id": "id",
|
222 |
+
"text": sel_map[_sel]["text_col"],
|
223 |
+
"vector": sel_map[_sel]["vector_col"],
|
224 |
+
"metadata": sel_map[_sel]["metadata_col"]
|
225 |
})
|
226 |
+
doc_search = MyScaleWithoutMetadataJson(st.session_state[f"emb_model_{_sel}"], config,
|
227 |
+
must_have_cols=sel_map[_sel]['must_have_cols'])
|
228 |
|
229 |
+
with st.spinner(f"Building Self Query Retriever for {_sel}..."):
|
230 |
+
metadata_field_info = sel_map[_sel]["metadata_cols"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
retriever = SelfQueryRetriever.from_llm(
|
232 |
+
OpenAI(model_name=query_model_name, openai_api_key=st.secrets['OPENAI_API_KEY'], temperature=0),
|
233 |
doc_search, "Scientific papers indexes with abstracts. All in English.", metadata_field_info,
|
234 |
+
use_original_query=False, structured_query_translator=MyScaleTranslator())
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
COMBINE_PROMPT = ChatPromptTemplate.from_strings(
|
237 |
string_messages=[(SystemMessagePromptTemplate, combine_prompt_template),
|
238 |
+
(HumanMessagePromptTemplate, '{question}')])
|
239 |
OPENAI_API_KEY = st.secrets['OPENAI_API_KEY']
|
240 |
|
241 |
+
with st.spinner(f'Building QA Chain with Self-query for {_sel}...'):
|
242 |
chain = ArXivQAwithSourcesChain(
|
243 |
retriever=retriever,
|
244 |
combine_documents_chain=ArXivStuffDocumentChain(
|
245 |
llm_chain=LLMChain(
|
246 |
prompt=COMBINE_PROMPT,
|
247 |
+
llm=ChatOpenAI(model_name=chat_model_name,
|
248 |
+
openai_api_key=OPENAI_API_KEY, temperature=0.6),
|
249 |
),
|
250 |
+
document_prompt=sel_map[_sel]["doc_prompt"],
|
251 |
document_variable_name="summaries",
|
252 |
|
253 |
),
|
|
|
255 |
max_tokens_limit=12000,
|
256 |
)
|
257 |
|
258 |
+
with st.spinner(f'Building Vector SQL Database Retriever for {_sel}...'):
|
259 |
MYSCALE_USER = st.secrets['MYSCALE_USER']
|
260 |
MYSCALE_PASSWORD = st.secrets['MYSCALE_PASSWORD']
|
261 |
MYSCALE_HOST = st.secrets['MYSCALE_HOST']
|
262 |
MYSCALE_PORT = st.secrets['MYSCALE_PORT']
|
263 |
engine = create_engine(
|
264 |
+
f'clickhouse://{MYSCALE_USER}:{MYSCALE_PASSWORD}@{MYSCALE_HOST}:{MYSCALE_PORT}/{sel_map[_sel]["database"]}?protocol=https')
|
265 |
metadata = MetaData(bind=engine)
|
266 |
PROMPT = PromptTemplate(
|
267 |
input_variables=["input", "table_info", "top_k"],
|
268 |
template=_myscale_prompt,
|
269 |
)
|
|
|
270 |
output_parser = VectorSQLRetrieveCustomOutputParser.from_embeddings(
|
271 |
+
model=st.session_state[f'emb_model_{_sel}'], must_have_columns=sel_map[_sel]["must_have_cols"])
|
272 |
sql_query_chain = VectorSQLDatabaseChain.from_llm(
|
273 |
+
llm=OpenAI(model_name=query_model_name, openai_api_key=OPENAI_API_KEY, temperature=0),
|
274 |
prompt=PROMPT,
|
275 |
top_k=10,
|
276 |
return_direct=True,
|
|
|
279 |
native_format=True
|
280 |
)
|
281 |
sql_retriever = VectorSQLDatabaseChainRetriever(
|
282 |
+
sql_db_chain=sql_query_chain, page_content_key=sel_map[_sel]["text_col"])
|
283 |
|
284 |
+
with st.spinner(f'Building QA Chain with Vector SQL for {_sel}...'):
|
285 |
sql_chain = ArXivQAwithSourcesChain(
|
286 |
retriever=sql_retriever,
|
287 |
combine_documents_chain=ArXivStuffDocumentChain(
|
288 |
llm_chain=LLMChain(
|
289 |
prompt=COMBINE_PROMPT,
|
290 |
+
llm=ChatOpenAI(model_name=chat_model_name,
|
291 |
+
openai_api_key=OPENAI_API_KEY, temperature=0.6),
|
292 |
),
|
293 |
+
document_prompt=sel_map[_sel]["doc_prompt"],
|
294 |
document_variable_name="summaries",
|
295 |
|
296 |
),
|
|
|
298 |
max_tokens_limit=12000,
|
299 |
)
|
300 |
|
301 |
+
return {
|
302 |
+
"metadata_columns": [{'name': m.name.name if type(m.name) is VirtualColumnName else m.name, 'desc': m.description, 'type': m.type} for m in metadata_field_info],
|
303 |
+
"retriever": retriever,
|
304 |
+
"chain": chain,
|
305 |
+
"sql_retriever": sql_retriever,
|
306 |
+
"sql_chain": sql_chain
|
307 |
+
}
|
308 |
+
|
309 |
+
|
310 |
+
@st.cache_resource
|
311 |
+
def build_all():
|
312 |
+
sel_map_obj = {}
|
313 |
+
for k in sel_map:
|
314 |
+
st.session_state[f'emb_model_{k}'] = build_embedding_model(k)
|
315 |
+
sel_map_obj[k] = build_retriever(k)
|
316 |
+
return sel_map_obj
|
317 |
|
318 |
|
319 |
if 'retriever' not in st.session_state:
|
320 |
+
st.session_state["sel_map_obj"] = build_all()
|
321 |
+
|
322 |
+
sel = st.selectbox('Choose the knowledge base you want to ask with:',
|
323 |
+
options=['ArXiv Papers', 'Wikipedia'])
|
324 |
+
sel_map[sel]['hint']()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
tab_sql, tab_self_query = st.tabs(['Vector SQL', 'Self-Query Retrievers'])
|
326 |
with tab_sql:
|
327 |
+
sel_map[sel]['hint_sql']()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
st.text_input("Ask a question:", key='query_sql')
|
329 |
cols = st.columns([1, 1, 7])
|
330 |
cols[0].button("Query", key='search_sql')
|
|
|
336 |
with plc_hldr.expander('Query Log', expanded=True):
|
337 |
callback = ChatDataSQLSearchCallBackHandler()
|
338 |
try:
|
339 |
+
docs = st.session_state.sel_map_obj[sel]["sql_retriever"].get_relevant_documents(
|
340 |
st.session_state.query_sql, callbacks=[callback])
|
341 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
342 |
docs = pd.DataFrame(
|
|
|
352 |
with plc_hldr.expander('Chat Log', expanded=True):
|
353 |
callback = ChatDataSQLAskCallBackHandler()
|
354 |
try:
|
355 |
+
ret = st.session_state.sel_map_obj[sel]["sql_chain"](
|
356 |
st.session_state.query_sql, callbacks=[callback])
|
357 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
358 |
st.markdown(
|
359 |
f"### Answer from LLM\n{ret['answer']}\n### References")
|
360 |
docs = ret['sources']
|
361 |
+
docs = pd.DataFrame(
|
362 |
+
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
363 |
+
display(
|
364 |
+
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
|
365 |
except Exception as e:
|
366 |
st.write('Oops 😵 Something bad happened...')
|
367 |
raise e
|
|
|
369 |
|
370 |
with tab_self_query:
|
371 |
st.info("You can retrieve papers with button `Query` or ask questions based on retrieved papers with button `Ask`.", icon='💡')
|
372 |
+
st.dataframe(st.session_state.sel_map_obj[sel]["metadata_columns"])
|
373 |
st.text_input("Ask a question:", key='query_self')
|
374 |
cols = st.columns([1, 1, 7])
|
375 |
cols[0].button("Query", key='search_self')
|
|
|
382 |
call_back = None
|
383 |
callback = ChatDataSelfSearchCallBackHandler()
|
384 |
try:
|
385 |
+
docs = st.session_state.sel_map_obj[sel]["retriever"].get_relevant_documents(
|
386 |
st.session_state.query_self, callbacks=[callback])
|
387 |
+
print(docs)
|
388 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
389 |
docs = pd.DataFrame(
|
390 |
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
391 |
+
display(docs, sel_map[sel]["must_have_cols"])
|
|
|
392 |
except Exception as e:
|
393 |
st.write('Oops 😵 Something bad happened...')
|
394 |
raise e
|
|
|
400 |
call_back = None
|
401 |
callback = ChatDataSelfAskCallBackHandler()
|
402 |
try:
|
403 |
+
ret = st.session_state.sel_map_obj[sel]["chain"](
|
404 |
st.session_state.query_self, callbacks=[callback])
|
405 |
callback.progress_bar.progress(value=1.0, text="Done!")
|
406 |
st.markdown(
|
407 |
f"### Answer from LLM\n{ret['answer']}\n### References")
|
408 |
docs = ret['sources']
|
409 |
+
docs = pd.DataFrame(
|
410 |
+
[{**d.metadata, 'abstract': d.page_content} for d in docs])
|
411 |
+
display(
|
412 |
+
docs, ['ref_id'] + sel_map[sel]["must_have_cols"], index='ref_id')
|
413 |
except Exception as e:
|
414 |
st.write('Oops 😵 Something bad happened...')
|
415 |
raise e
|
callbacks/arxiv_callbacks.py
CHANGED
@@ -90,4 +90,4 @@ class ChatDataSQLAskCallBackHandler(ChatDataSQLSearchCallBackHandler):
|
|
90 |
self.progress_bar = st.progress(value=0.0, text='Writing SQL...')
|
91 |
self.status_bar = st.empty()
|
92 |
self.prog_value = 0
|
93 |
-
self.prog_interval = 0.1
|
|
|
90 |
self.progress_bar = st.progress(value=0.0, text='Writing SQL...')
|
91 |
self.status_bar = st.empty()
|
92 |
self.prog_value = 0
|
93 |
+
self.prog_interval = 0.1
|
chains/arxiv_chains.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import
|
2 |
import inspect
|
3 |
from typing import Dict, Any, Optional, List, Tuple
|
4 |
|
@@ -7,21 +7,62 @@ from langchain.callbacks.manager import (
|
|
7 |
AsyncCallbackManagerForChainRun,
|
8 |
CallbackManagerForChainRun,
|
9 |
)
|
|
|
10 |
from langchain.schema import BaseRetriever
|
11 |
from langchain.callbacks.manager import Callbacks
|
12 |
from langchain.schema.prompt_template import format_document
|
13 |
from langchain.docstore.document import Document
|
14 |
from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain
|
15 |
-
from langchain.
|
16 |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
17 |
|
18 |
from langchain_experimental.sql.vector_sql import VectorSQLOutputParser
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
class VectorSQLRetrieveCustomOutputParser(VectorSQLOutputParser):
|
22 |
"""Based on VectorSQLOutputParser
|
23 |
It also modify the SQL to get all columns
|
24 |
"""
|
|
|
25 |
|
26 |
@property
|
27 |
def _type(self) -> str:
|
@@ -123,12 +164,15 @@ class ArXivQAwithSourcesChain(RetrievalQAWithSourcesChain):
|
|
123 |
ref_cnt = 1
|
124 |
for d in docs:
|
125 |
ref_id = d.metadata['ref_id']
|
126 |
-
if f"
|
|
|
|
|
127 |
title = d.metadata['title'].replace('\n', '')
|
128 |
d.metadata['ref_id'] = ref_cnt
|
129 |
-
answer = answer.replace(f"
|
130 |
sources.append(d)
|
131 |
ref_cnt += 1
|
|
|
132 |
|
133 |
result: Dict[str, Any] = {
|
134 |
self.answer_key: answer,
|
@@ -147,4 +191,4 @@ class ArXivQAwithSourcesChain(RetrievalQAWithSourcesChain):
|
|
147 |
|
148 |
@property
|
149 |
def _chain_type(self) -> str:
|
150 |
-
return "arxiv_qa_with_sources_chain"
|
|
|
1 |
+
import logging
|
2 |
import inspect
|
3 |
from typing import Dict, Any, Optional, List, Tuple
|
4 |
|
|
|
7 |
AsyncCallbackManagerForChainRun,
|
8 |
CallbackManagerForChainRun,
|
9 |
)
|
10 |
+
from langchain.embeddings.base import Embeddings
|
11 |
from langchain.schema import BaseRetriever
|
12 |
from langchain.callbacks.manager import Callbacks
|
13 |
from langchain.schema.prompt_template import format_document
|
14 |
from langchain.docstore.document import Document
|
15 |
from langchain.chains.qa_with_sources.retrieval import RetrievalQAWithSourcesChain
|
16 |
+
from langchain.vectorstores.myscale import MyScale, MyScaleSettings
|
17 |
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
|
18 |
|
19 |
from langchain_experimental.sql.vector_sql import VectorSQLOutputParser
|
20 |
|
21 |
+
logger = logging.getLogger()
|
22 |
+
|
23 |
+
class MyScaleWithoutMetadataJson(MyScale):
|
24 |
+
def __init__(self, embedding: Embeddings, config: Optional[MyScaleSettings] = None, must_have_cols: List[str] = [], **kwargs: Any) -> None:
|
25 |
+
super().__init__(embedding, config, **kwargs)
|
26 |
+
self.must_have_cols: List[str] = must_have_cols
|
27 |
+
|
28 |
+
def _build_qstr(
|
29 |
+
self, q_emb: List[float], topk: int, where_str: Optional[str] = None
|
30 |
+
) -> str:
|
31 |
+
q_emb_str = ",".join(map(str, q_emb))
|
32 |
+
if where_str:
|
33 |
+
where_str = f"PREWHERE {where_str}"
|
34 |
+
else:
|
35 |
+
where_str = ""
|
36 |
+
|
37 |
+
q_str = f"""
|
38 |
+
SELECT {self.config.column_map['text']}, dist, {','.join(self.must_have_cols)}
|
39 |
+
FROM {self.config.database}.{self.config.table}
|
40 |
+
{where_str}
|
41 |
+
ORDER BY distance({self.config.column_map['vector']}, [{q_emb_str}])
|
42 |
+
AS dist {self.dist_order}
|
43 |
+
LIMIT {topk}
|
44 |
+
"""
|
45 |
+
return q_str
|
46 |
+
|
47 |
+
def similarity_search_by_vector(self, embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) -> List[Document]:
|
48 |
+
q_str = self._build_qstr(embedding, k, where_str)
|
49 |
+
try:
|
50 |
+
return [
|
51 |
+
Document(
|
52 |
+
page_content=r[self.config.column_map["text"]],
|
53 |
+
metadata={k: r[k] for k in self.must_have_cols},
|
54 |
+
)
|
55 |
+
for r in self.client.query(q_str).named_results()
|
56 |
+
]
|
57 |
+
except Exception as e:
|
58 |
+
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
|
59 |
+
return []
|
60 |
|
61 |
class VectorSQLRetrieveCustomOutputParser(VectorSQLOutputParser):
|
62 |
"""Based on VectorSQLOutputParser
|
63 |
It also modify the SQL to get all columns
|
64 |
"""
|
65 |
+
must_have_columns: List[str]
|
66 |
|
67 |
@property
|
68 |
def _type(self) -> str:
|
|
|
164 |
ref_cnt = 1
|
165 |
for d in docs:
|
166 |
ref_id = d.metadata['ref_id']
|
167 |
+
if f"Doc #{ref_id}" in answer:
|
168 |
+
answer = answer.replace(f"Doc #{ref_id}", f"#{ref_id}")
|
169 |
+
if f"#{ref_id}" in answer:
|
170 |
title = d.metadata['title'].replace('\n', '')
|
171 |
d.metadata['ref_id'] = ref_cnt
|
172 |
+
answer = answer.replace(f"#{ref_id}", f"{title} [{ref_cnt}]")
|
173 |
sources.append(d)
|
174 |
ref_cnt += 1
|
175 |
+
|
176 |
|
177 |
result: Dict[str, Any] = {
|
178 |
self.answer_key: answer,
|
|
|
191 |
|
192 |
@property
|
193 |
def _chain_type(self) -> str:
|
194 |
+
return "arxiv_qa_with_sources_chain"
|
prompts/arxiv_prompt.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
combine_prompt_template = (
|
2 |
-
"You are a helpful
|
3 |
-
+ "related to
|
4 |
+ "and try to provide concise and accurate answers to any questions asked by the user. If you are unable to find "
|
5 |
+ "relevant information in the given sections, you will need to let the user know that the source does not contain "
|
6 |
+ "relevant information but still try to provide an answer based on your general knowledge. You must refer to the "
|
7 |
+ "corresponding section name and page that you refer to when answering. The following is the related information "
|
8 |
-
+ "about the
|
9 |
-
+ "Now you should anwser user's question. Remember you must use
|
10 |
)
|
11 |
|
12 |
_myscale_prompt = """You are a MyScale expert. Given an input question, first create a syntactically correct MyScale query to run, then look at the results of the query and return the answer to the input question.
|
|
|
1 |
combine_prompt_template = (
|
2 |
+
"You are a helpful document assistant. Your task is to provide information and answer any questions "
|
3 |
+
+ "related to documents given below. You should use the sections, title and abstract of the selected documents as your source of information "
|
4 |
+ "and try to provide concise and accurate answers to any questions asked by the user. If you are unable to find "
|
5 |
+ "relevant information in the given sections, you will need to let the user know that the source does not contain "
|
6 |
+ "relevant information but still try to provide an answer based on your general knowledge. You must refer to the "
|
7 |
+ "corresponding section name and page that you refer to when answering. The following is the related information "
|
8 |
+
+ "about the document that will help you answer users' questions, you MUST answer it using question's language:\n\n {summaries}"
|
9 |
+
+ "Now you should anwser user's question. Remember you must use `Doc #` to refer papers:\n\n"
|
10 |
)
|
11 |
|
12 |
_myscale_prompt = """You are a MyScale expert. Given an input question, first create a syntactically correct MyScale query to run, then look at the results of the query and return the answer to the input question.
|