Spaces:
Running
Running
File size: 7,764 Bytes
04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde 0e573d0 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 04f0bde c6f6149 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import pandas as pd
import hashlib
import requests
from typing import List, Optional
from datetime import datetime
from langchain.schema.embeddings import Embeddings
from streamlit.runtime.uploaded_file_manager import UploadedFile
from clickhouse_connect import get_client
from multiprocessing.pool import ThreadPool
from langchain.vectorstores.myscale import MyScaleWithoutJSON, MyScaleSettings
from .helper import create_retriever_tool
parser_url = "https://api.unstructured.io/general/v0/general"
def parse_files(api_key, user_id, files: List[UploadedFile]):
def parse_file(file: UploadedFile):
headers = {
"accept": "application/json",
"unstructured-api-key": api_key,
}
data = {"strategy": "auto", "ocr_languages": ["eng"]}
file_hash = hashlib.sha256(file.read()).hexdigest()
file_data = {"files": (file.name, file.getvalue(), file.type)}
response = requests.post(
parser_url, headers=headers, data=data, files=file_data
)
json_response = response.json()
if response.status_code != 200:
raise ValueError(str(json_response))
texts = [
{
"text": t["text"],
"file_name": t["metadata"]["filename"],
"entity_id": hashlib.sha256(
(file_hash + t["text"]).encode()
).hexdigest(),
"user_id": user_id,
"created_by": datetime.now(),
}
for t in json_response
if t["type"] == "NarrativeText" and len(t["text"].split(" ")) > 10
]
return texts
with ThreadPool(8) as p:
rows = []
for r in p.imap_unordered(parse_file, files):
rows.extend(r)
return rows
def extract_embedding(embeddings: Embeddings, texts):
if len(texts) > 0:
embs = embeddings.embed_documents(
[t["text"] for _, t in enumerate(texts)])
for i, _ in enumerate(texts):
texts[i]["vector"] = embs[i]
return texts
raise ValueError("No texts extracted!")
class PrivateKnowledgeBase:
def __init__(
self,
host,
port,
username,
password,
embedding: Embeddings,
parser_api_key,
db="chat",
kb_table="private_kb",
tool_table="private_tool",
) -> None:
super().__init__()
kb_schema_ = f"""
CREATE TABLE IF NOT EXISTS {db}.{kb_table}(
entity_id String,
file_name String,
text String,
user_id String,
created_by DateTime,
vector Array(Float32),
CONSTRAINT cons_vec_len CHECK length(vector) = 768,
VECTOR INDEX vidx vector TYPE MSTG('metric_type=Cosine')
) ENGINE = ReplacingMergeTree ORDER BY entity_id
"""
tool_schema_ = f"""
CREATE TABLE IF NOT EXISTS {db}.{tool_table}(
tool_id String,
tool_name String,
file_names Array(String),
user_id String,
created_by DateTime,
tool_description String
) ENGINE = ReplacingMergeTree ORDER BY tool_id
"""
self.kb_table = kb_table
self.tool_table = tool_table
config = MyScaleSettings(
host=host,
port=port,
username=username,
password=password,
database=db,
table=kb_table,
)
client = get_client(
host=config.host,
port=config.port,
username=config.username,
password=config.password,
)
client.command("SET allow_experimental_object_type=1")
client.command(kb_schema_)
client.command(tool_schema_)
self.parser_api_key = parser_api_key
self.vstore = MyScaleWithoutJSON(
embedding=embedding,
config=config,
must_have_cols=["file_name", "text", "created_by"],
)
def list_files(self, user_id, tool_name=None):
query = f"""
SELECT DISTINCT file_name, COUNT(entity_id) AS num_paragraph,
arrayMax(arrayMap(x->length(x), groupArray(text))) AS max_chars
FROM {self.vstore.config.database}.{self.kb_table}
WHERE user_id = '{user_id}' GROUP BY file_name
"""
return [r for r in self.vstore.client.query(query).named_results()]
def add_by_file(
self, user_id, files: List[UploadedFile], **kwargs
):
data = parse_files(self.parser_api_key, user_id, files)
data = extract_embedding(self.vstore.embeddings, data)
self.vstore.client.insert_df(
self.kb_table,
pd.DataFrame(data),
database=self.vstore.config.database,
)
def clear(self, user_id):
self.vstore.client.command(
f"DELETE FROM {self.vstore.config.database}.{self.kb_table} "
f"WHERE user_id='{user_id}'"
)
query = f"""DELETE FROM {self.vstore.config.database}.{self.tool_table}
WHERE user_id = '{user_id}'"""
self.vstore.client.command(query)
def create_tool(
self, user_id, tool_name, tool_description, files: Optional[List[str]] = None
):
self.vstore.client.insert_df(
self.tool_table,
pd.DataFrame(
[
{
"tool_id": hashlib.sha256(
(user_id + tool_name).encode("utf-8")
).hexdigest(),
"tool_name": tool_name,
"file_names": files,
"user_id": user_id,
"created_by": datetime.now(),
"tool_description": tool_description,
}
]
),
database=self.vstore.config.database,
)
def list_tools(self, user_id, tool_name=None):
extended_where = f"AND tool_name = '{tool_name}'" if tool_name else ""
query = f"""
SELECT tool_name, tool_description, length(file_names)
FROM {self.vstore.config.database}.{self.tool_table}
WHERE user_id = '{user_id}' {extended_where}
"""
return [r for r in self.vstore.client.query(query).named_results()]
def remove_tools(self, user_id, tool_names):
tool_names = ",".join([f"'{t}'" for t in tool_names])
query = f"""DELETE FROM {self.vstore.config.database}.{self.tool_table}
WHERE user_id = '{user_id}' AND tool_name IN [{tool_names}]"""
self.vstore.client.command(query)
def as_tools(self, user_id, tool_name=None):
tools = self.list_tools(user_id=user_id, tool_name=tool_name)
retrievers = {
t["tool_name"]: create_retriever_tool(
self.vstore.as_retriever(
search_kwargs={
"where_str": (
f"user_id='{user_id}' "
f"""AND file_name IN (
SELECT arrayJoin(file_names) FROM (
SELECT file_names
FROM {self.vstore.config.database}.{self.tool_table}
WHERE user_id = '{user_id}' AND tool_name = '{t['tool_name']}')
)"""
)
},
),
name=t["tool_name"],
description=t["tool_description"],
)
for t in tools
}
return retrievers
|