Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from zipfile import ZipFile | |
| from PIL import Image | |
| import numpy as np | |
| from tensorflow import keras | |
| from keras.models import load_model | |
| from keras import backend as K | |
| import cv2 | |
| import tempfile | |
| st.title("Satellite Image Segmentation with Dense-UNet") | |
| def loading_model(): | |
| model = load_model('satellitesegment.h5') | |
| #model._make_predict_function() | |
| #model.summary() | |
| session = K.get_session() | |
| return model,session | |
| def upload_img(image): | |
| img_npy = np.array(image) | |
| #img_npy = img_npy.reshape((1,512,512,3)) | |
| return img_npy | |
| uploaded_file = st.file_uploader("Choose an image...", type=['tif']) | |
| if uploaded_file is not None: | |
| tfile = tempfile.NamedTemporaryFile(delete=False) | |
| tfile.write(uploaded_file.read()) | |
| t_img = Image.open(tfile.name) | |
| image = cv2.imread(tfile.name,-1) | |
| st.image(t_img, caption='Uploaded Image.', use_column_width=False) | |
| button = st.button("Let's Predict Image") | |
| if button: | |
| t = st.empty() | |
| t.markdown('## İmage is segmenting...') | |
| #t.markdown(f'{image.shape}') | |
| model,session = loading_model() | |
| K.set_session(session) | |
| image = np.array(image,dtype='uint16').reshape((1,512,512,3)) | |
| result_img = model.predict(image) | |
| result_img = result_img[:,:,:,:]>0.5 | |
| result_img = result_img[0,:,:,0] | |
| result_img = Image.fromarray(result_img) | |
| t.markdown('## Segmentation result: ') | |
| st.image(result_img, caption='Predicted Image.', use_column_width=False) | |