Spaces:
Running
on
Zero
Running
on
Zero
Commit
•
9b729f7
1
Parent(s):
e97bdf7
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
from time import sleep
|
3 |
from diffusers import DiffusionPipeline
|
4 |
from huggingface_hub import hf_hub_download
|
|
|
5 |
|
6 |
import torch
|
7 |
import json
|
@@ -28,12 +29,11 @@ with open(lora_list, "r") as file:
|
|
28 |
for item in data
|
29 |
]
|
30 |
|
31 |
-
|
32 |
-
hf_hub_download(item["repo"], item["weights"])
|
33 |
-
]
|
34 |
-
|
35 |
-
for item, saved_name in zip(sdxl_loras, saved_names):
|
36 |
item["saved_name"] = saved_name
|
|
|
|
|
37 |
|
38 |
css = '''
|
39 |
#title{text-align:center;}
|
@@ -49,23 +49,21 @@ css = '''
|
|
49 |
}
|
50 |
'''
|
51 |
|
52 |
-
#@spaces.GPU
|
53 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
54 |
original_pipe = copy.deepcopy(pipe)
|
55 |
|
56 |
def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)):
|
57 |
pipe = copy.deepcopy(original_pipe)
|
58 |
-
pipe.to("cuda")
|
59 |
-
|
60 |
-
pipe.load_lora_weights(shuffled_items[0]['saved_name'])
|
61 |
pipe.fuse_lora(lora_1_scale)
|
62 |
-
pipe.load_lora_weights(shuffled_items[1]['
|
63 |
pipe.fuse_lora(lora_2_scale)
|
64 |
|
65 |
if negative_prompt == "":
|
66 |
negative_prompt = False
|
67 |
|
68 |
-
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=
|
69 |
del pipe
|
70 |
gc.collect()
|
71 |
torch.cuda.empty_cache()
|
|
|
2 |
from time import sleep
|
3 |
from diffusers import DiffusionPipeline
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
+
from safetensors.torch import load_file
|
6 |
|
7 |
import torch
|
8 |
import json
|
|
|
29 |
for item in data
|
30 |
]
|
31 |
|
32 |
+
for item in sdxl_loras:
|
33 |
+
saved_name = hf_hub_download(item["repo"], item["weights"])
|
|
|
|
|
|
|
34 |
item["saved_name"] = saved_name
|
35 |
+
state_dict = load_file(saved_name)
|
36 |
+
item["state_dict"] = {k: v.to(device="cuda", dtype=torch.float16) for k, v in state_dict.items() if torch.is_tensor(v)}
|
37 |
|
38 |
css = '''
|
39 |
#title{text-align:center;}
|
|
|
49 |
}
|
50 |
'''
|
51 |
|
|
|
52 |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
53 |
original_pipe = copy.deepcopy(pipe)
|
54 |
|
55 |
def merge_and_run(prompt, negative_prompt, shuffled_items, lora_1_scale=0.5, lora_2_scale=0.5, progress=gr.Progress(track_tqdm=True)):
|
56 |
pipe = copy.deepcopy(original_pipe)
|
57 |
+
pipe.to("cuda")
|
58 |
+
pipe.load_lora_weights(shuffled_items[0]['state_dict'])
|
|
|
59 |
pipe.fuse_lora(lora_1_scale)
|
60 |
+
pipe.load_lora_weights(shuffled_items[1]['state_dict'])
|
61 |
pipe.fuse_lora(lora_2_scale)
|
62 |
|
63 |
if negative_prompt == "":
|
64 |
negative_prompt = False
|
65 |
|
66 |
+
image = pipe(prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=22, width=768, height=768).images[0]
|
67 |
del pipe
|
68 |
gc.collect()
|
69 |
torch.cuda.empty_cache()
|