import subprocess import shutil import os import gradio as gr import torchvision.transforms as T import spaces subprocess.run(["git", "clone", "https://github.com/AIRI-Institute/HairFastGAN"], check=True) os.chdir("HairFastGAN") subprocess.run(["git", "clone", "https://huggingface.co/AIRI-Institute/HairFastGAN"], check=True) os.chdir("HairFastGAN") subprocess.run(["git", "lfs", "pull"], check=True) os.chdir("..") shutil.move("HairFastGAN/pretrained_models", "pretrained_models") shutil.move("HairFastGAN/input", "input") shutil.rmtree("HairFastGAN") directory_path = 'pretrained_models' # Iterate over each entry in the directory for entry in os.listdir(directory_path): # Create full path to the entry full_path = os.path.join(directory_path, entry) # Check if it's a file if os.path.isfile(full_path): # Get the file size size = os.path.getsize(full_path) # Print file name and its size in bytes print(f"{entry}: {size} bytes") hairfastgan_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'HairFastGAN') print(hairfastgan_path) sys.path.append(hairfastgan_path) from hair_swap import HairFast, get_parser hair_fast = HairFast(get_parser().parse_args([])) @spaces.GPU def swap_hair(source, target_1, target_2): result = hair_fast(face_img, shape_img, color_img) final_image = hair_fast.swap(face_path, shape_path, color_path) return T.functional.to_pil_image(final_image) with gr.Blocks() as demo: gr.Markdown("Start typing below and then click **Run** to see the output.") with gr.Row(): source = gr.Image(label="Photo that you want to replace the hair", type="filepath") target_1 = gr.Image(label="Reference hair you want to get", type="filepath") target_2 = gr.Image(label="Reference color hair you want to get (optional)", type="filepath") btn = gr.Button("Get the haircut") output = gr.Image(label="Your result") btn.click(fn=update, inputs=inp, outputs=out) demo.launch()