Spaces:
Runtime error
Runtime error
import subprocess | |
import shutil | |
import os | |
import gradio as gr | |
import torchvision.transforms as T | |
import spaces | |
subprocess.run(["git", "clone", "https://github.com/AIRI-Institute/HairFastGAN"], check=True) | |
os.chdir("HairFastGAN") | |
subprocess.run(["git", "clone", "https://huggingface.co/AIRI-Institute/HairFastGAN"], check=True) | |
os.chdir("HairFastGAN") | |
subprocess.run(["git", "lfs", "pull"], check=True) | |
os.chdir("..") | |
shutil.move("HairFastGAN/pretrained_models", "pretrained_models") | |
shutil.move("HairFastGAN/input", "input") | |
shutil.rmtree("HairFastGAN") | |
directory_path = 'pretrained_models' | |
# Iterate over each entry in the directory | |
for entry in os.listdir(directory_path): | |
# Create full path to the entry | |
full_path = os.path.join(directory_path, entry) | |
# Check if it's a file | |
if os.path.isfile(full_path): | |
# Get the file size | |
size = os.path.getsize(full_path) | |
# Print file name and its size in bytes | |
print(f"{entry}: {size} bytes") | |
from HairFastGAN.hair_swap import HairFast, get_parser | |
hair_fast = HairFast(get_parser().parse_args([])) | |
def swap_hair(source, target_1, target_2): | |
result = hair_fast(face_img, shape_img, color_img) | |
final_image = hair_fast.swap(face_path, shape_path, color_path) | |
return T.functional.to_pil_image(final_image) | |
with gr.Blocks() as demo: | |
gr.Markdown("Start typing below and then click **Run** to see the output.") | |
with gr.Row(): | |
source = gr.Image(label="Photo that you want to replace the hair", type="filepath") | |
target_1 = gr.Image(label="Reference hair you want to get", type="filepath") | |
target_2 = gr.Image(label="Reference color hair you want to get (optional)", type="filepath") | |
btn = gr.Button("Get the haircut") | |
output = gr.Image(label="Your result") | |
btn.click(fn=update, inputs=inp, outputs=out) | |
demo.launch() |