chore: Update Dockerfile to improve build process and upgrade pip
Browse files- Dockerfile +0 -3
- README.md +2 -1
- main.py +18 -15
Dockerfile
CHANGED
@@ -1,9 +1,6 @@
|
|
1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
|
4 |
-
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
5 |
-
# you will also find guides on how best to write your Dockerfile
|
6 |
-
|
7 |
# Use the official Python 3.10 slim image as the base image
|
8 |
FROM tiangolo/uvicorn-gunicorn:python3.10-slim
|
9 |
|
|
|
1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
|
|
|
|
|
|
|
4 |
# Use the official Python 3.10 slim image as the base image
|
5 |
FROM tiangolo/uvicorn-gunicorn:python3.10-slim
|
6 |
|
README.md
CHANGED
@@ -9,4 +9,5 @@ pinned: false
|
|
9 |
|
10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
11 |
|
12 |
-
SOTA open VLM is [InternVL-1.5](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard), which is 22B
|
|
|
|
9 |
|
10 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
11 |
|
12 |
+
SOTA open VLM is [InternVL-1.5](https://huggingface.co/spaces/opencompass/open_vlm_leaderboard), which is *22B*, for practical deployment I choose moondream which is a model can answer real-world questions about images (378x378). It's tiny by today's models, with only *1.6B* parameters. That enables it to run on a variety of devices, including mobile phones and edge devices.
|
13 |
+
|
main.py
CHANGED
@@ -4,15 +4,13 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
4 |
from PIL import Image
|
5 |
from openai import AsyncOpenAI
|
6 |
from pydantic import BaseModel
|
7 |
-
from
|
8 |
|
9 |
import io
|
10 |
import os
|
11 |
import multion
|
12 |
import torch
|
13 |
import instructor
|
14 |
-
import openai
|
15 |
-
|
16 |
from multion.client import MultiOn
|
17 |
from dotenv import load_dotenv
|
18 |
|
@@ -20,26 +18,27 @@ from dotenv import load_dotenv
|
|
20 |
load_dotenv()
|
21 |
|
22 |
multion = MultiOn(api_key=os.environ.get("MULTION_API_KEY"))
|
23 |
-
|
24 |
|
25 |
app = FastAPI()
|
26 |
|
27 |
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
|
28 |
-
|
29 |
|
30 |
model_id = "vikhyatk/moondream2"
|
31 |
revision = "2024-05-20"
|
32 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, revision=revision).to(device)
|
33 |
-
|
34 |
model = torch.compile(model)
|
35 |
-
|
36 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
37 |
-
|
38 |
|
39 |
client = instructor.from_openai(AsyncOpenAI(
|
40 |
# This is the default and can be omitted
|
41 |
api_key=os.environ.get("OPENAI_API_KEY"),
|
42 |
))
|
|
|
43 |
|
44 |
class MultiOnInputBrowse(BaseModel):
|
45 |
"""
|
@@ -80,13 +79,17 @@ async def process_image_file(file: UploadFile) -> str:
|
|
80 |
except Exception as e:
|
81 |
raise HTTPException(status_code=500, detail=str(e))
|
82 |
|
|
|
|
|
|
|
|
|
83 |
@app.post("/process-input/")
|
84 |
async def process_input(text: str = Form(...), file: UploadFile = File(None)):
|
85 |
if file is not None:
|
86 |
try:
|
87 |
-
|
88 |
image_description = await process_image_file(file)
|
89 |
-
|
90 |
except HTTPException as e:
|
91 |
raise e
|
92 |
else:
|
@@ -99,18 +102,18 @@ async def process_input(text: str = Form(...), file: UploadFile = File(None)):
|
|
99 |
else:
|
100 |
processed_text = text
|
101 |
|
102 |
-
|
103 |
command = await generate_command(processed_text)
|
104 |
-
|
105 |
|
106 |
try:
|
107 |
-
|
108 |
response = multion.browse(
|
109 |
cmd=command.cmd,
|
110 |
url=command.url,
|
111 |
local=command.local
|
112 |
)
|
113 |
-
|
114 |
return JSONResponse(content={"response": response.message, "command": command.model_dump()})
|
115 |
|
116 |
except Exception as e:
|
@@ -119,7 +122,7 @@ async def process_input(text: str = Form(...), file: UploadFile = File(None)):
|
|
119 |
|
120 |
async def generate_command(content: str) -> MultiOnInputBrowse:
|
121 |
try:
|
122 |
-
response = await
|
123 |
model="gpt-4o",
|
124 |
messages=[
|
125 |
{
|
|
|
4 |
from PIL import Image
|
5 |
from openai import AsyncOpenAI
|
6 |
from pydantic import BaseModel
|
7 |
+
from rich import print
|
8 |
|
9 |
import io
|
10 |
import os
|
11 |
import multion
|
12 |
import torch
|
13 |
import instructor
|
|
|
|
|
14 |
from multion.client import MultiOn
|
15 |
from dotenv import load_dotenv
|
16 |
|
|
|
18 |
load_dotenv()
|
19 |
|
20 |
multion = MultiOn(api_key=os.environ.get("MULTION_API_KEY"))
|
21 |
+
print("MultiOn API key loaded")
|
22 |
|
23 |
app = FastAPI()
|
24 |
|
25 |
device = torch.device("cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu")
|
26 |
+
print(f"Device: {device}")
|
27 |
|
28 |
model_id = "vikhyatk/moondream2"
|
29 |
revision = "2024-05-20"
|
30 |
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, revision=revision).to(device)
|
31 |
+
print(f"Model loaded: {model_id} to {device}")
|
32 |
model = torch.compile(model)
|
33 |
+
print(f"Model compiled: {model_id} to {device}")
|
34 |
tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
35 |
+
print(f"Tokenizer loaded: {model_id}")
|
36 |
|
37 |
client = instructor.from_openai(AsyncOpenAI(
|
38 |
# This is the default and can be omitted
|
39 |
api_key=os.environ.get("OPENAI_API_KEY"),
|
40 |
))
|
41 |
+
print("OpenAI API key loaded and client initialized")
|
42 |
|
43 |
class MultiOnInputBrowse(BaseModel):
|
44 |
"""
|
|
|
79 |
except Exception as e:
|
80 |
raise HTTPException(status_code=500, detail=str(e))
|
81 |
|
82 |
+
@app.get("/")
|
83 |
+
def read_root():
|
84 |
+
return {"Hello": "World"}
|
85 |
+
|
86 |
@app.post("/process-input/")
|
87 |
async def process_input(text: str = Form(...), file: UploadFile = File(None)):
|
88 |
if file is not None:
|
89 |
try:
|
90 |
+
print("Processing image file")
|
91 |
image_description = await process_image_file(file)
|
92 |
+
print(f"Image description: {image_description}")
|
93 |
except HTTPException as e:
|
94 |
raise e
|
95 |
else:
|
|
|
102 |
else:
|
103 |
processed_text = text
|
104 |
|
105 |
+
print(f"Processed text: {processed_text}")
|
106 |
command = await generate_command(processed_text)
|
107 |
+
print(f"Command generated: {command.message}")
|
108 |
|
109 |
try:
|
110 |
+
print("Calling MultiOn API")
|
111 |
response = multion.browse(
|
112 |
cmd=command.cmd,
|
113 |
url=command.url,
|
114 |
local=command.local
|
115 |
)
|
116 |
+
print(f"Response received: {response.message}")
|
117 |
return JSONResponse(content={"response": response.message, "command": command.model_dump()})
|
118 |
|
119 |
except Exception as e:
|
|
|
122 |
|
123 |
async def generate_command(content: str) -> MultiOnInputBrowse:
|
124 |
try:
|
125 |
+
response = await client.chat.completions.create(
|
126 |
model="gpt-4o",
|
127 |
messages=[
|
128 |
{
|