# Copyright 2024 HuggingFace Inc., the LlamaFactory team, and the Llamole team. # # This code is inspired by the HuggingFace's transformers library. # https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from types import MethodType from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import warnings import numpy as np import torch from transformers import Seq2SeqTrainer from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from ..callbacks import PissaConvertCallback, SaveProcessorCallback from ..trainer_utils import create_custom_optimzer, create_custom_scheduler if TYPE_CHECKING: import optuna from torch.utils.data import Dataset from transformers import ProcessorMixin from transformers.trainer import PredictionOutput from ...hparams import FinetuningArguments from transformers.trainer_utils import ( enable_full_determinism, find_executable_batch_size, get_last_checkpoint, set_seed, ) import huggingface_hub.utils as hf_hub_utils from transformers.utils import is_sagemaker_mp_enabled from transformers.trainer_callback import TrainerState TRAINER_STATE_NAME = "trainer_state.json" logger = get_logger(__name__) class CustomSeq2SeqTrainer(Seq2SeqTrainer): r""" Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE. """ def __init__( self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs ) -> None: super().__init__(**kwargs) self.finetuning_args = finetuning_args if processor is not None: self.add_callback(SaveProcessorCallback(processor)) if finetuning_args.pissa_convert: self.add_callback(PissaConvertCallback) def create_optimizer(self) -> "torch.optim.Optimizer": if self.optimizer is None: self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args) return super().create_optimizer() def create_scheduler( self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None ) -> "torch.optim.lr_scheduler.LRScheduler": create_custom_scheduler(self.args, num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer) def prediction_step( self, model: "torch.nn.Module", inputs: Dict[str, Union[torch.Tensor, Any]], prediction_loss_only: bool, ignore_keys: Optional[List[str]] = None, ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: r""" Removes the prompt part in the generated tokens. Subclass and override to inject custom behavior. """ labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels if self.args.predict_with_generate: assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor." prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1) if prompt_len > label_len: inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"]) if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility) inputs["labels"] = inputs["labels"][:, :prompt_len] loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated) model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys ) if generated_tokens is not None and self.args.predict_with_generate: generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id generated_tokens = generated_tokens.contiguous() return loss, generated_tokens, labels def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor: r""" Pads the tensor to the same length as the target tensor. """ assert self.tokenizer.pad_token_id is not None, "Pad token is required." padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor) padded_tensor[:, -src_tensor.shape[-1] :] = src_tensor # adopt left-padding return padded_tensor.contiguous() # in contiguous memory def save_predictions(self, dataset: "Dataset", predict_results: "PredictionOutput") -> None: r""" Saves model predictions to `output_dir`. A custom behavior that not contained in Seq2SeqTrainer. """ if not self.is_world_process_zero(): return output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl") logger.info(f"Saving prediction results to {output_prediction_file}") labels = np.where( predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id ) preds = np.where( predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id ) for i in range(len(preds)): pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0] if len(pad_len): # move pad token to last preds[i] = np.concatenate((preds[i][pad_len[0] :], preds[i][: pad_len[0]]), axis=-1) decoded_inputs = self.tokenizer.batch_decode(dataset["input_ids"], skip_special_tokens=True) decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True) decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True) with open(output_prediction_file, "w", encoding="utf-8") as writer: res: List[str] = [] for text, label, pred in zip(decoded_inputs, decoded_labels, decoded_preds): res.append(json.dumps({"prompt": text, "label": label, "predict": pred}, ensure_ascii=False)) writer.write("\n".join(res)) def train( self, resume_from_checkpoint: Optional[Union[str, bool]] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None, ignore_keys_for_eval: Optional[List[str]] = None, **kwargs, ): """ Main training entry point. Args: resume_from_checkpoint (`str` or `bool`, *optional*): If a `str`, local path to a saved checkpoint as saved by a previous instance of [`Trainer`]. If a `bool` and equals `True`, load the last checkpoint in *args.output_dir* as saved by a previous instance of [`Trainer`]. If present, training will resume from the model/optimizer/scheduler states loaded here. trial (`optuna.Trial` or `Dict[str, Any]`, *optional*): The trial run or the hyperparameter dictionary for hyperparameter search. ignore_keys_for_eval (`List[str]`, *optional*) A list of keys in the output of your model (if it is a dictionary) that should be ignored when gathering predictions for evaluation during the training. kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments used to hide deprecated arguments """ if resume_from_checkpoint is False: resume_from_checkpoint = None # memory metrics - must set up as early as possible self._memory_tracker.start() args = self.args self.is_in_train = True # Attach NEFTune hooks if necessary if self.neftune_noise_alpha is not None: self.model = self._activate_neftune(self.model) # do_train is not a reliable argument, as it might not be set and .train() still called, so # the following is a workaround: if (args.fp16_full_eval or args.bf16_full_eval) and not args.do_train: self._move_model_to_device(self.model, args.device) if "model_path" in kwargs: resume_from_checkpoint = kwargs.pop("model_path") warnings.warn( "`model_path` is deprecated and will be removed in a future version. Use `resume_from_checkpoint` " "instead.", FutureWarning, ) if len(kwargs) > 0: raise TypeError(f"train() received got unexpected keyword arguments: {', '.join(list(kwargs.keys()))}.") # This might change the seed so needs to run first. self._hp_search_setup(trial) self._train_batch_size = self.args.train_batch_size # Model re-init model_reloaded = False if self.model_init is not None: # Seed must be set before instantiating the model when using model_init. enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed) self.model = self.call_model_init(trial) model_reloaded = True # Reinitializes optimizer and scheduler self.optimizer, self.lr_scheduler = None, None # Load potential model checkpoint if isinstance(resume_from_checkpoint, bool) and resume_from_checkpoint: resume_from_checkpoint = get_last_checkpoint(args.output_dir) if resume_from_checkpoint is None: raise ValueError(f"No valid checkpoint found in output directory ({args.output_dir})") if resume_from_checkpoint is not None: if not is_sagemaker_mp_enabled() and not self.is_deepspeed_enabled and not self.is_fsdp_enabled: self._load_from_checkpoint(resume_from_checkpoint, self.model.language_model) # In case of repeating the find_executable_batch_size, set `self._train_batch_size` properly state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME)) if state.train_batch_size is not None: self._train_batch_size = state.train_batch_size # If model was re-initialized, put it on the right device and update self.model_wrapped if model_reloaded: if self.place_model_on_device: self._move_model_to_device(self.model, args.device) self.model_wrapped = self.model inner_training_loop = find_executable_batch_size( self._inner_training_loop, self._train_batch_size, args.auto_find_batch_size ) return inner_training_loop( args=args, resume_from_checkpoint=resume_from_checkpoint, trial=trial, ignore_keys_for_eval=ignore_keys_for_eval, )