# Copyright 2024 Llamole Team # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import TYPE_CHECKING, Dict import numpy as np import torch from transformers.utils import is_jieba_available, is_nltk_available from ...extras.constants import IGNORE_INDEX from ...extras.packages import is_rouge_available if TYPE_CHECKING: from transformers import EvalPrediction, PreTrainedTokenizer if is_jieba_available(): import jieba # type: ignore if is_nltk_available(): from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu if is_rouge_available(): from rouge_chinese import Rouge def compute_accuracy(eval_preds: "EvalPrediction") -> Dict[str, float]: preds, labels = eval_preds.predictions, eval_preds.label_ids accuracies = [] for i in range(len(preds)): pred, label = preds[i, :-1], labels[i, 1:] label_mask = label != IGNORE_INDEX accuracies.append(np.mean(pred[label_mask] == label[label_mask])) return {"accuracy": float(np.mean(accuracies))} def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor": logits = logits[0] if isinstance(logits, (list, tuple)) else logits return torch.argmax(logits, dim=-1) @dataclass class ComputeMetrics: r""" Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer. """ tokenizer: "PreTrainedTokenizer" def __call__(self, eval_preds: "EvalPrediction") -> Dict[str, float]: r""" Uses the model predictions to compute metrics. """ preds, labels = eval_preds.predictions, eval_preds.label_ids score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []} preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id) labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id) decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True) decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True) for pred, label in zip(decoded_preds, decoded_labels): hypothesis = list(jieba.cut(pred)) reference = list(jieba.cut(label)) if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0: result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}} else: rouge = Rouge() scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference)) result = scores[0] for k, v in result.items(): score_dict[k].append(round(v["f"] * 100, 4)) bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3) score_dict["bleu-4"].append(round(bleu_score * 100, 4)) return {k: float(np.mean(v)) for k, v in score_dict.items()}