import evaluate from evaluate.utils import launch_gradio_widget import gradio as gr from transformers import AutoModelForSequenceClassification, pipeline, RobertaForSequenceClassification, RobertaTokenizer, AutoTokenizer # Create a Gradio interface with audio file and text inputs def classify_toxicity(audio_file, text_input): # Transcribe the audio file using Whisper ASR if audio_file != None: whisper_module = evaluate.load("whisper") transcription_results = whisper_module.compute(uploaded=audio_file) # Extract the transcribed text transcribed_text = transcription_results["transcription"] else: transcribed_text = text_input # Load the selected toxicity classification model toxicity_module = evaluate.load("toxicity", "facebook/roberta-hate-speech-dynabench-r4-target") #toxicity_module = evaluate.load("toxicity", 'DaNLP/da-electra-hatespeech-detection', module_type="measurement") toxicity_results = toxicity_module.compute(predictions=[transcribed_text]) toxicity_score = toxicity_results["toxicity"][0] print(toxicity_score) return toxicity_score, transcribed_text # return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}" with gr.Blocks() as iface: with gr.Column(): aud_input = gr.Audio(source="upload", type="filepath", label="Upload Audio File") text = gr.Textbox(label="Enter Text", placeholder="Enter text here...") submit_btn = gr.Button(label="Run") with gr.Column(): out_text = gr.Textbox() submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text], outputs=out_text) iface.launch()