Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -116,10 +116,12 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
|
|
116 |
# plot.update(x=classification_df["labels"], y=classification_df["scores"])
|
117 |
if toxicity_score > threshold:
|
118 |
print("threshold exceeded!! Launch intervention")
|
119 |
-
|
|
|
|
|
120 |
|
121 |
print("output column: ", holder)
|
122 |
-
return toxicity_score, classification_output, transcribed_text,
|
123 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
124 |
else:
|
125 |
threshold = slider_logic(slider)
|
@@ -157,19 +159,6 @@ def classify_toxicity(audio_file, text_input, classify_anxiety, emo_class, expli
|
|
157 |
print("threshold exceeded!! Launch intervention")
|
158 |
return classify_anxiety
|
159 |
|
160 |
-
def intervention_output(intervene):
|
161 |
-
if intervene == "Audio File":
|
162 |
-
print("audio updated")
|
163 |
-
return { output_col : gr.update(visible=True), out_aud : gr.update(value="./calm.wav", visible=True, autoplay=True)}
|
164 |
-
elif intervene == "Therapy App":
|
165 |
-
print("therapy app updated")
|
166 |
-
return { output_col : gr.update(visible=True), out_img : gr.update(value="./hrv-breathing.gif", visible=True)}
|
167 |
-
elif intervene == "Text Message":
|
168 |
-
phrase = positive_affirmations()
|
169 |
-
return { output_col : gr.update(visible=True), out_text : gr.update(value=phrase, visible=True)}
|
170 |
-
else:
|
171 |
-
return " "
|
172 |
-
|
173 |
def positive_affirmations():
|
174 |
affirmations = [
|
175 |
"I have survived my anxiety before and I will survive again now",
|
@@ -195,10 +184,8 @@ with gr.Blocks() as iface:
|
|
195 |
with gr.Column():
|
196 |
out_val = gr.Textbox()
|
197 |
out_class = gr.Textbox()
|
198 |
-
with gr.Column(visible=False) as output_col:
|
199 |
out_text = gr.Textbox()
|
200 |
-
|
201 |
-
|
202 |
-
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider, intervention_type], outputs=[out_val, out_class, out_text, output_col])
|
203 |
|
204 |
iface.launch()
|
|
|
116 |
# plot.update(x=classification_df["labels"], y=classification_df["scores"])
|
117 |
if toxicity_score > threshold:
|
118 |
print("threshold exceeded!! Launch intervention")
|
119 |
+
affirm = positive_affirmations()
|
120 |
+
else:
|
121 |
+
affirm = ""
|
122 |
|
123 |
print("output column: ", holder)
|
124 |
+
return toxicity_score, classification_output, transcribed_text, affirm
|
125 |
# return f"Toxicity Score ({available_models[selected_model]}): {toxicity_score:.4f}"
|
126 |
else:
|
127 |
threshold = slider_logic(slider)
|
|
|
159 |
print("threshold exceeded!! Launch intervention")
|
160 |
return classify_anxiety
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
def positive_affirmations():
|
163 |
affirmations = [
|
164 |
"I have survived my anxiety before and I will survive again now",
|
|
|
184 |
with gr.Column():
|
185 |
out_val = gr.Textbox()
|
186 |
out_class = gr.Textbox()
|
|
|
187 |
out_text = gr.Textbox()
|
188 |
+
out_affirm = gr.Textbox()
|
189 |
+
submit_btn.click(fn=classify_toxicity, inputs=[aud_input, text, anxiety_class, emo_class, explit_preference, sense_slider, intervention_type], outputs=[out_val, out_class, out_text, out_affirm])
|
|
|
190 |
|
191 |
iface.launch()
|