import re import io import os from typing import Optional, Tuple import datetime import sys import gradio as gr import requests import json from threading import Lock from langchain import ConversationChain, LLMChain from langchain.agents import load_tools, initialize_agent, Tool from langchain.tools.bing_search.tool import BingSearchRun, BingSearchAPIWrapper from langchain.chains.conversation.memory import ConversationBufferMemory from langchain.llms import OpenAI from langchain.chains import PALChain from langchain.llms import AzureOpenAI from langchain.utilities import ImunAPIWrapper, ImunMultiAPIWrapper from langchain.utils import get_url_path from openai.error import AuthenticationError, InvalidRequestError, RateLimitError import argparse import logging from opencensus.ext.azure.log_exporter import AzureLogHandler import uuid logger = None OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY") BUG_FOUND_MSG = "Some Functionalities not supported yet. Please refresh and hit 'Click to wake up MM-REACT'" AUTH_ERR_MSG = "OpenAI key needed" REFRESH_MSG = "Please refresh and hit 'Click to wake up MM-REACT'" MAX_TOKENS = 512 def get_logger(): global logger if logger is None: logger = logging.getLogger(__name__) logger.addHandler(AzureLogHandler()) return logger # load chain def load_chain(history, log_state): global ARGS if ARGS.openAIModel == 'openAIGPT35': # openAI GPT 3.5 llm = OpenAI(temperature=0, max_tokens=MAX_TOKENS) elif ARGS.openAIModel == 'azureChatGPT': # for Azure OpenAI ChatGPT llm = AzureOpenAI(deployment_name="text-chat-davinci-002", model_name="text-chat-davinci-002", temperature=0, max_tokens=MAX_TOKENS) elif ARGS.openAIModel == 'azureGPT35turbo': # for Azure OpenAI gpt3.5 turbo llm = AzureOpenAI(deployment_name="gpt-35-turbo-version-0301", model_name="gpt-35-turbo (version 0301)", temperature=0, max_tokens=MAX_TOKENS) elif ARGS.openAIModel == 'azureTextDavinci003': # for Azure OpenAI text davinci llm = AzureOpenAI(deployment_name="text-davinci-003", model_name="text-davinci-003", temperature=0, max_tokens=MAX_TOKENS) elif ARGS.openAIModel == 'azureGPT4': # for Azure GPT4 private preview llm = AzureOpenAI(deployment_name="gpt-4-32k-0314", temperature=0, chat_completion=True, max_tokens=MAX_TOKENS, openai_api_version="2023-03-15-preview") memory = ConversationBufferMemory(memory_key="chat_history") ############################# # loading all tools imun_dense = ImunAPIWrapper( imun_url=os.environ.get("IMUN_URL2"), params=os.environ.get("IMUN_PARAMS2"), imun_subscription_key=os.environ.get("IMUN_SUBSCRIPTION_KEY2")) imun = ImunAPIWrapper() imun = ImunMultiAPIWrapper(imuns=[imun, imun_dense]) imun_celeb = ImunAPIWrapper( imun_url=os.environ.get("IMUN_CELEB_URL"), params="") imun_read = ImunAPIWrapper( imun_url=os.environ.get("IMUN_OCR_READ_URL"), params=os.environ.get("IMUN_OCR_PARAMS"), imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) imun_receipt = ImunAPIWrapper( imun_url=os.environ.get("IMUN_OCR_RECEIPT_URL"), params=os.environ.get("IMUN_OCR_PARAMS"), imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) imun_businesscard = ImunAPIWrapper( imun_url=os.environ.get("IMUN_OCR_BC_URL"), params=os.environ.get("IMUN_OCR_PARAMS"), imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) imun_layout = ImunAPIWrapper( imun_url=os.environ.get("IMUN_OCR_LAYOUT_URL"), params=os.environ.get("IMUN_OCR_PARAMS"), imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) imun_invoice = ImunAPIWrapper( imun_url=os.environ.get("IMUN_OCR_INVOICE_URL"), params=os.environ.get("IMUN_OCR_PARAMS"), imun_subscription_key=os.environ.get("IMUN_OCR_SUBSCRIPTION_KEY")) bing = BingSearchAPIWrapper(k=2) def edit_photo(query: str) -> str: endpoint = os.environ.get("PHOTO_EDIT_ENDPOINT_URL") query = query.strip() url_idx, img_url = get_url_path(query) if not img_url.startswith(("http://", "https://")): return "Invalid image URL" img_url = img_url.replace("0.0.0.0", os.environ.get("PHOTO_EDIT_ENDPOINT_URL_SHORT")) instruction = query[:url_idx] # This should be some internal IP to wherever the server runs job = {"image_path": img_url, "instruction": instruction} response = requests.post(endpoint, json=job) if response.status_code != 200: return "Could not finish the task try again later!" return "Here is the edited image " + endpoint + response.json()["edited_image"] # these tools should not step on each other's toes tools = [ Tool( name="PAL-MATH", func=PALChain.from_math_prompt(llm).run, description=( "A wrapper around calculator. " "A language model that is really good at solving complex word math problems." "Input should be a fully worded hard word math problem." ) ), Tool( name = "Image Understanding", func=imun.run, description=( "A wrapper around Image Understanding. " "Useful for when you need to understand what is inside an image (objects, texts, people)." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "OCR Understanding", func=imun_read.run, description=( "A wrapper around OCR Understanding (Optical Character Recognition). " "Useful after Image Understanding tool has found text or handwriting is present in the image tags." "This tool can find the actual text, written name, or product name in the image." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Receipt Understanding", func=imun_receipt.run, description=( "A wrapper receipt understanding. " "Useful after Image Understanding tool has recognized a receipt in the image tags." "This tool can find the actual receipt text, prices and detailed items." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Business Card Understanding", func=imun_businesscard.run, description=( "A wrapper around business card understanding. " "Useful after Image Understanding tool has recognized businesscard in the image tags." "This tool can find the actual business card text, name, address, email, website on the card." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Layout Understanding", func=imun_layout.run, description=( "A wrapper around layout and table understanding. " "Useful after Image Understanding tool has recognized businesscard in the image tags." "This tool can find the actual business card text, name, address, email, website on the card." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Invoice Understanding", func=imun_invoice.run, description=( "A wrapper around invoice understanding. " "Useful after Image Understanding tool has recognized businesscard in the image tags." "This tool can find the actual business card text, name, address, email, website on the card." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), Tool( name = "Celebrity Understanding", func=imun_celeb.run, description=( "A wrapper around celebrity understanding. " "Useful after Image Understanding tool has recognized people in the image tags that could be celebrities." "This tool can find the name of celebrities in the image." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), BingSearchRun(api_wrapper=bing), Tool( name = "Photo Editing", func=edit_photo, description=( "A wrapper around photo editing. " "Useful to edit an image with a given instruction." "Input should be an image url, or path to an image file (e.g. .jpg, .png)." ) ), ] chain = initialize_agent(tools, llm, agent="conversational-assistant", verbose=True, memory=memory, return_intermediate_steps=True, max_iterations=4) log_state = log_state or "" print ("log_state {}".format(log_state)) log_state = str(uuid.uuid1()) print("langchain reloaded") # eproperties = {'custom_dimensions': {'key_1': 'value_1', 'key_2': 'value_2'}} properties = {'custom_dimensions': {'session': log_state}} get_logger().warning("langchain reloaded", extra=properties) history = [] history.append(("Show me what you got!", "Hi Human, Please upload an image to get started!")) return history, history, chain, log_state, \ gr.Textbox.update(visible=True), \ gr.Button.update(visible=True), \ gr.UploadButton.update(visible=True), \ gr.Row.update(visible=True), \ gr.HTML.update(visible=True), \ gr.Button.update(variant="secondary") # executes input typed by human def run_chain(chain, inp): # global chain output = "" try: output = chain.conversation(input=inp, keep_short=ARGS.noIntermediateConv) # output = chain.run(input=inp) except AuthenticationError as ae: output = AUTH_ERR_MSG + str(datetime.datetime.now()) + ". " + str(ae) print("output", output) except RateLimitError as rle: output = "\n\nRateLimitError: " + str(rle) except ValueError as ve: output = "\n\nValueError: " + str(ve) except InvalidRequestError as ire: output = "\n\nInvalidRequestError: " + str(ire) except Exception as e: output = "\n\n" + BUG_FOUND_MSG + ":\n\n" + str(e) return output # simple chat function wrapper class ChatWrapper: def __init__(self): self.lock = Lock() def __call__( self, inp: str, history: Optional[Tuple[str, str]], chain: Optional[ConversationChain], log_state ): """Execute the chat functionality.""" self.lock.acquire() try: print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") print("inp: " + inp) properties = {'custom_dimensions': {'session': log_state}} get_logger().warning("inp: " + inp, extra=properties) history = history or [] # If chain is None, that is because no API key was provided. output = "Please paste your OpenAI key from openai.com to use this app. " + str(datetime.datetime.now()) ######################## # multi line outputs = run_chain(chain, inp) outputs = process_chain_output(outputs) print (" len(outputs) {}".format(len(outputs))) for i, output in enumerate(outputs): if i==0: history.append((inp, output)) else: history.append((None, output)) except Exception as e: raise e finally: self.lock.release() print (history) properties = {'custom_dimensions': {'session': log_state}} if outputs is None: outputs = "" get_logger().warning(str(json.dumps(outputs)), extra=properties) return history, history, "" def add_image_with_path(state, chain, imagepath, log_state): global ARGS state = state or [] url_input_for_chain = "http://0.0.0.0:{}/file={}".format(ARGS.port, imagepath) outputs = run_chain(chain, url_input_for_chain) ######################## # multi line response handling outputs = process_chain_output(outputs) for i, output in enumerate(outputs): if i==0: # state.append((f"![](/file={imagepath})", output)) state.append(((imagepath,), output)) else: state.append((None, output)) print (state) properties = {'custom_dimensions': {'session': log_state}} get_logger().warning("url_input_for_chain: " + url_input_for_chain, extra=properties) if outputs is None: outputs = "" get_logger().warning(str(json.dumps(outputs)), extra=properties) return state, state # upload image def add_image(state, chain, image, log_state): global ARGS state = state or [] # handling spaces in image path imagepath = image.name.replace(" ", "%20") url_input_for_chain = "http://0.0.0.0:{}/file={}".format(ARGS.port, imagepath) outputs = run_chain(chain, url_input_for_chain) ######################## # multi line response handling outputs = process_chain_output(outputs) for i, output in enumerate(outputs): if i==0: state.append(((imagepath,), output)) else: state.append((None, output)) print (state) properties = {'custom_dimensions': {'session': log_state}} get_logger().warning("url_input_for_chain: " + url_input_for_chain, extra=properties) if outputs is None: outputs = "" get_logger().warning(str(json.dumps(outputs)), extra=properties) return state, state # extract image url from response and process differently def replace_with_image_markup(text): img_url = None text= text.strip() url_idx = text.rfind(" ") img_url = text[url_idx + 1:].strip() if img_url.endswith((".", "?")): img_url = img_url[:-1] # if img_url is not None: # img_url = f"![](/file={img_url})" return img_url # multi line response handling def process_chain_output(outputs): global ARGS EMPTY_AI_REPLY = "AI:" # print("outputs {}".format(outputs)) if isinstance(outputs, str): # single line output if outputs.strip() == EMPTY_AI_REPLY: outputs = REFRESH_MSG outputs = [outputs] elif isinstance(outputs, list): # multi line output if ARGS.noIntermediateConv: # remove the items with assistant in it. cleanOutputs = [] for output in outputs: if output.strip() == EMPTY_AI_REPLY: output = REFRESH_MSG # found an edited image url to embed img_url = None # print ("type list: {}".format(output)) if "assistant: here is the edited image " in output.lower(): img_url = replace_with_image_markup(output) cleanOutputs.append("Assistant: Here is the edited image") if img_url is not None: cleanOutputs.append((img_url,)) else: cleanOutputs.append(output) # cleanOutputs = cleanOutputs + output+ "." outputs = cleanOutputs return outputs def init_and_kick_off(): global ARGS # initalize chatWrapper chat = ChatWrapper() exampleTitle = """
MM-REACT: April 20th version with GPT4 and image understanding capabilities