File size: 7,111 Bytes
9a7dd44
 
 
 
 
0e6f2ea
 
 
9a7dd44
fa27543
 
 
 
 
 
0e6f2ea
9a7dd44
 
 
 
0e6f2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7dd44
8535ce3
 
 
 
 
 
 
 
 
 
 
 
fa27543
 
8535ce3
 
 
 
 
 
 
 
 
 
 
 
 
fa27543
 
 
 
 
 
 
 
 
8535ce3
 
9a7dd44
 
8535ce3
 
fa27543
8535ce3
 
0e6f2ea
8535ce3
0e6f2ea
 
 
8535ce3
 
 
 
 
 
 
 
 
 
fa27543
 
 
8535ce3
 
9a7dd44
 
 
 
 
 
 
 
fa27543
9a7dd44
 
 
 
 
0e6f2ea
9a7dd44
 
 
0e6f2ea
fa27543
9a7dd44
 
8535ce3
9a7dd44
fa27543
 
 
9a7dd44
 
 
 
 
 
 
 
 
8535ce3
9a7dd44
 
 
 
 
8535ce3
 
 
9a7dd44
 
 
 
 
 
0e6f2ea
8535ce3
9a7dd44
 
0e6f2ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a7dd44
8535ce3
9a7dd44
 
 
 
 
8535ce3
9a7dd44
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
from gradio_bbox_annotator import BBoxAnnotator
import json
import os
from pathlib import Path
from PIL import Image
from io import BytesIO
import tempfile

# Define categories and their limits
CATEGORY_LIMITS = {
    "advertisement": 1,  # Maximum 1 advertisement annotation per image
    "text": 2          # Maximum 2 text annotations per image
}
CATEGORIES = list(CATEGORY_LIMITS.keys())
MAX_SIZE = [1024, 1024]  # Maximum width and height for resized images

class AnnotationManager:
    def __init__(self):
        self.annotations = {}
        self.temp_dir = tempfile.mkdtemp()  # Create temporary directory for resized images
    
    def resize_image(self, image_path):
        """Resize image to maximum dimensions while maintaining aspect ratio"""
        try:
            # Read and resize image
            with open(image_path, "rb") as f:
                img = Image.open(BytesIO(f.read()))
                img.thumbnail(MAX_SIZE, Image.Resampling.LANCZOS)
            
            # Save resized image to temporary file
            filename = os.path.basename(image_path)
            temp_path = os.path.join(self.temp_dir, f"resized_{filename}")
            img.save(temp_path)
            
            return temp_path
        except Exception as e:
            raise ValueError(f"Error processing image: {str(e)}")
    
    def process_image_upload(self, image_path):
        """Process uploaded image and return path to resized version"""
        if not image_path:
            return None
        return self.resize_image(image_path)
    
    def validate_annotations(self, bbox_data):
        """Validate the annotation data and return (is_valid, error_message)"""
        if not bbox_data or not isinstance(bbox_data, tuple):
            return False, "No image or annotations provided"
        
        image_path, annotations = bbox_data
        if not isinstance(image_path, str):
            return False, "Invalid image format"
            
        if not annotations:
            return False, "No annotations drawn"
        
        # Count annotations per category
        category_counts = {cat: 0 for cat in CATEGORIES}
        for ann in annotations:
            if len(ann) != 5:
                return False, "Invalid annotation format"
            y1, y2, x1, x2, label = ann
            
            # Validate coordinates
            if any(not isinstance(coord, (int, float)) for coord in [y1, y2, x1, x2]):
                return False, "Invalid coordinate values"
            
            # Validate label
            if not label or label not in CATEGORIES:
                return False, f"Invalid or missing label. Must be one of: {', '.join(CATEGORIES)}"
            
            # Count this annotation
            category_counts[label] += 1
        
        # Check category limits
        for category, count in category_counts.items():
            limit = CATEGORY_LIMITS[category]
            if count > limit:
                return False, f"Too many {category} annotations. Maximum allowed: {limit}"
            
        return True, ""
    
    def add_annotation(self, bbox_data):
        """Add or update annotations for an image"""
        is_valid, error_msg = self.validate_annotations(bbox_data)
        if not is_valid:
            return self.get_json_annotations(), f"❌ Error: {error_msg}"
            
        image_path, annotations = bbox_data
        # Use original filename (remove 'resized_' prefix)
        filename = os.path.basename(image_path)
        if filename.startswith("resized_"):
            filename = filename[8:]
            
        formatted_annotations = []
        for ann in annotations:
            y1, y2, x1, x2, label = ann
            formatted_annotations.append({
                "annotation": [y1, y2, x1, x2],
                "label": label
            })
        self.annotations[filename] = formatted_annotations
        
        # Count annotations by type
        counts = {cat: sum(1 for ann in annotations if ann[4] == cat) for cat in CATEGORIES}
        counts_str = ", ".join(f"{count} {cat}" for cat, count in counts.items())
        success_msg = f"✅ Successfully saved for {filename}: {counts_str}"
        
        return self.get_json_annotations(), success_msg
    
    def get_json_annotations(self):
        """Get all annotations as formatted JSON string"""
        return json.dumps(self.annotations, indent=2)
    
    def clear_annotations(self):
        """Clear all annotations"""
        self.annotations = {}
        return "", "🗑️ All annotations cleared"

def create_interface():
    annotation_mgr = AnnotationManager()
    
    with gr.Blocks() as demo:
        gr.Markdown(f"""
        # Advertisement and Text Annotation Tool
        
        **Instructions:**
        1. Upload an image (will be automatically resized to max {MAX_SIZE[0]}x{MAX_SIZE[1]})
        2. Draw bounding boxes and select the appropriate label
        3. Click 'Save Annotations' to add to the collection
        4. Repeat for all images
        5. Copy the combined JSON when finished
        
        **Annotation Limits per Image:**
        - advertisement: Maximum 1 annotation
        - text: Maximum 2 annotations
        """)
        
        with gr.Row():
            with gr.Column(scale=2):
                bbox_input = BBoxAnnotator(
                    show_label=True,
                    label="Draw Bounding Boxes",
                    show_download_button=True,
                    interactive=True,
                    categories=CATEGORIES
                )
            
            with gr.Column(scale=1):
                json_output = gr.TextArea(
                    label="Combined Annotations JSON",
                    interactive=True,
                    lines=15,
                    show_copy_button=True
                )
                
        with gr.Row():
            save_btn = gr.Button("Save Current Image Annotations", variant="primary")
            clear_btn = gr.Button("Clear All Annotations", variant="secondary")

        # Add status message
        status_msg = gr.Markdown(label="Status")
        
        # Event handlers
        def update_image(image_path):
            if not image_path:
                return None
            try:
                resized_path = annotation_mgr.process_image_upload(image_path)
                return resized_path
            except Exception as e:
                return None
        
        # Handle image upload and resizing
        bbox_input.upload(
            fn=update_image,
            inputs=[bbox_input],
            outputs=[bbox_input]
        )
        
        save_btn.click(
            fn=annotation_mgr.add_annotation,
            inputs=[bbox_input],
            outputs=[json_output, status_msg]
        )
        
        clear_btn.click(
            fn=annotation_mgr.clear_annotations,
            inputs=[],
            outputs=[json_output, status_msg]
        )
        
    return demo

if __name__ == "__main__":
    demo = create_interface()
    demo.launch()