|
import os
|
|
import sys
|
|
import tqdm
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import soundfile as sf
|
|
import numpy as np
|
|
|
|
now_dir = os.getcwd()
|
|
sys.path.append(now_dir)
|
|
from rvc.lib.utils import load_embedding
|
|
|
|
device = sys.argv[1]
|
|
n_parts = int(sys.argv[2])
|
|
i_part = int(sys.argv[3])
|
|
i_gpu = sys.argv[4]
|
|
exp_dir = sys.argv[5]
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = str(i_gpu)
|
|
version = sys.argv[6]
|
|
is_half = bool(sys.argv[7])
|
|
embedder_model = sys.argv[8]
|
|
try:
|
|
embedder_model_custom = sys.argv[9]
|
|
except:
|
|
embedder_model_custom = None
|
|
|
|
|
|
wav_path = f"{exp_dir}/1_16k_wavs"
|
|
out_path = f"{exp_dir}/3_feature256" if version == "v1" else f"{exp_dir}/3_feature768"
|
|
os.makedirs(out_path, exist_ok=True)
|
|
|
|
|
|
def read_wave(wav_path, normalize=False):
|
|
wav, sr = sf.read(wav_path)
|
|
assert sr == 16000
|
|
feats = torch.from_numpy(wav)
|
|
feats = feats.half() if is_half else feats.float()
|
|
feats = feats.mean(-1) if feats.dim() == 2 else feats
|
|
feats = feats.view(1, -1)
|
|
if normalize:
|
|
with torch.no_grad():
|
|
feats = F.layer_norm(feats, feats.shape)
|
|
return feats
|
|
|
|
|
|
print("Starting feature extraction...")
|
|
models, saved_cfg, task = load_embedding(embedder_model, embedder_model_custom)
|
|
model = models[0]
|
|
model = model.to(device)
|
|
if device not in ["mps", "cpu"]:
|
|
model = model.half()
|
|
model.eval()
|
|
|
|
todo = sorted(os.listdir(wav_path))[i_part::n_parts]
|
|
n = max(1, len(todo) // 10)
|
|
|
|
if len(todo) == 0:
|
|
print(
|
|
"An error occurred in the feature extraction, make sure you have provided the audios correctly."
|
|
)
|
|
else:
|
|
print(f"{len(todo)}")
|
|
with tqdm.tqdm(total=len(todo)) as pbar:
|
|
for idx, file in enumerate(todo):
|
|
try:
|
|
if file.endswith(".wav"):
|
|
wav_file_path = os.path.join(wav_path, file)
|
|
out_file_path = os.path.join(out_path, file.replace("wav", "npy"))
|
|
|
|
if os.path.exists(out_file_path):
|
|
continue
|
|
|
|
feats = read_wave(wav_file_path, normalize=saved_cfg.task.normalize)
|
|
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
|
|
inputs = {
|
|
"source": feats.to(device),
|
|
"padding_mask": padding_mask.to(device),
|
|
"output_layer": 9 if version == "v1" else 12,
|
|
}
|
|
with torch.no_grad():
|
|
logits = model.extract_features(**inputs)
|
|
feats = (
|
|
model.final_proj(logits[0])
|
|
if version == "v1"
|
|
else logits[0]
|
|
)
|
|
|
|
feats = feats.squeeze(0).float().cpu().numpy()
|
|
if np.isnan(feats).sum() == 0:
|
|
np.save(out_file_path, feats, allow_pickle=False)
|
|
else:
|
|
print(f"{file} - contains nan")
|
|
pbar.set_description(f"Processing {file} {feats.shape}")
|
|
except Exception as error:
|
|
print(error)
|
|
pbar.update(1)
|
|
|
|
print("Feature extraction completed successfully!")
|
|
|