import torch from PIL import Image import imageio from diffusers import StableVideoDiffusionPipeline from diffusers.utils import load_image, export_to_video import gradio as gr import spaces # Load the pipeline pipe = StableVideoDiffusionPipeline.from_pretrained( "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" ) pipe.to("cuda") pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.enable_model_cpu_offload() pipe.unet.enable_forward_chunking() @spaces.GPU(duration=300) def generate_video(image, seed=42, fps=7, motion_bucket_id=180, noise_aug_strength=0.1): # Resize the image image = image.resize((1024, 576)) # Set the generator seed generator = torch.manual_seed(seed) # Generate the frames frames = pipe(image, decode_chunk_size=2, generator=generator, num_frames=25, motion_bucket_id=motion_bucket_id, noise_aug_strength=noise_aug_strength).frames[0] # Export the frames to a video output_path = "generated.mp4" export_to_video(frames, output_path, fps=fps) return output_path # Create the Gradio interface iface = gr.Interface( fn=generate_video, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Number(label="Seed", value=42), gr.Number(label="FPS", value=7), gr.Number(label="Motion Bucket ID", value=180), gr.Number(label="Noise Aug Strength", value=0.1) ], outputs=gr.Video(label="Generated Video"), title="Stable Video Diffusion", description="Generate a video from an uploaded image using Stable Video Diffusion." ) # Launch the interface iface.launch()