import argparse import os import time from os import path from safetensors.torch import load_file import huggingface_hub from huggingface_hub import hf_hub_download cache_path = path.join(path.dirname(path.abspath(__file__)), "models") os.environ["TRANSFORMERS_CACHE"] = cache_path os.environ["HF_HUB_CACHE"] = cache_path os.environ["HF_HOME"] = cache_path import gradio as gr import torch from diffusers import FluxPipeline torch.backends.cuda.matmul.allow_tf32 = True huggingface_hub.login(os.getenv('HF_TOKEN')) class timer: def __init__(self, method_name="timed process"): self.method = method_name def __enter__(self): self.start = time.time() print(f"{self.method} starts") def __exit__(self, exc_type, exc_val, exc_tb): end = time.time() print(f"{self.method} took {str(round(end - self.start, 2))}s") if not path.exists(cache_path): os.makedirs(cache_path, exist_ok=True) def load_and_fuse_lora_weights(pipe, lora_models): for repo, file_path, lora_scale in lora_models: lora_weights_path = hf_hub_download(repo_id=repo, filename=file_path) pipe.load_lora_weights(lora_weights_path) pipe.fuse_lora(lora_scale=lora_scale) # List of LoRA models and their corresponding scales lora_models = [ ("mrcuddle/Character_Design_Helper", "CharacterDesign-FluxV2.safetensors", 0.125), ("mrcuddle/live2d-model-maker", "LIVE2D-FLUX.safetensors", 0.125) ] pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16) # Load and fuse LoRA weights load_and_fuse_lora_weights(pipe, lora_models) pipe.to(device="cuda", dtype=torch.bfloat16) with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown( """

Hyper-FLUX-8steps-LoRA

AutoML team from ByteDance

""" ) with gr.Row(): with gr.Column(scale=3): with gr.Group(): prompt = gr.Textbox( label="Your Image Description", placeholder="E.g., A serene landscape with mountains and a lake at sunset", lines=3 ) # Hidden textbox for the preset prompt preset_prompt = gr.Textbox( label="Preset Prompt", value="live2d,guijiaoxiansheng,separate hand,separate feet,separate head,multiple views,white background,CharacterDisgnFlux,magic particles, multiple references,color pallete reference,simple background,upper body,front,from side", visible=False ) with gr.Accordion("Advanced Settings", open=False): with gr.Group(): with gr.Row(): height = gr.Slider(label="Height", minimum=256, maximum=1152, step=64, value=1024) width = gr.Slider(label="Width", minimum=256, maximum=1152, step=64, value=1024) with gr.Row(): steps = gr.Slider(label="Inference Steps", minimum=5, maximum=25, step=1, value=8) scales = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, step=1, value=3.5) seed = gr.Number(label="Seed (for reproducibility)", value=-1, precision=0) generate_btn = gr.Button("Generate Image", variant="primary", scale=1) with gr.Column(scale=4): output = gr.Image(label="Your Generated Image") def process_image(height, width, steps, scales, prompt, seed, preset_prompt): global pipe with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): # Concatenate the preset prompt with the user's input prompt full_prompt = f"{preset_prompt} {prompt}" return pipe( prompt=[full_prompt], generator=torch.Generator().manual_seed(int(seed)), num_inference_steps=int(steps), guidance_scale=float(scales), height=int(height), width=int(width), max_sequence_length=256 ).images[0] generate_btn.click( process_image, inputs=[height, width, steps, scales, prompt, seed, preset_prompt], outputs=output ) if __name__ == "__main__": demo.launch()