Spaces:
Build error
Build error
import torch | |
import torch.nn as nn | |
from scipy.cluster.vq import kmeans2 | |
from torch.nn import functional as F | |
class VQEmbeddingEMA(nn.Module): | |
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, decay=0.999, epsilon=1e-5, | |
print_vq_prob=False): | |
super(VQEmbeddingEMA, self).__init__() | |
self.commitment_cost = commitment_cost | |
self.n_embeddings = n_embeddings | |
self.decay = decay | |
self.epsilon = epsilon | |
self.print_vq_prob = print_vq_prob | |
self.register_buffer('data_initialized', torch.zeros(1)) | |
init_bound = 1 / 512 | |
embedding = torch.Tensor(n_embeddings, embedding_dim) | |
embedding.uniform_(-init_bound, init_bound) | |
self.register_buffer("embedding", embedding) | |
self.register_buffer("ema_count", torch.zeros(n_embeddings)) | |
self.register_buffer("ema_weight", self.embedding.clone()) | |
def encode(self, x): | |
B, T, _ = x.shape | |
M, D = self.embedding.size() | |
x_flat = x.detach().reshape(-1, D) | |
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) + | |
torch.sum(x_flat ** 2, dim=1, keepdim=True), | |
x_flat, self.embedding.t(), | |
alpha=-2.0, beta=1.0) # [B*T_mel, N_vq] | |
indices = torch.argmin(distances.float(), dim=-1) # [B*T_mel] | |
quantized = F.embedding(indices, self.embedding) | |
quantized = quantized.view_as(x) | |
return x_flat, quantized, indices | |
def forward(self, x): | |
""" | |
:param x: [B, T, D] | |
:return: [B, T, D] | |
""" | |
B, T, _ = x.shape | |
M, D = self.embedding.size() | |
# if self.training and self.data_initialized.item() == 0: | |
# print('| running kmeans in VQVAE') # data driven initialization for the embeddings | |
# x_flat = x.detach().reshape(-1, D) | |
# rp = torch.randperm(x_flat.size(0)) | |
# kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points') | |
# self.embedding.copy_(torch.from_numpy(kd[0])) | |
# x_flat, quantized, indices = self.encode(x) | |
# encodings = F.one_hot(indices, M).float() | |
# self.ema_weight.copy_(torch.matmul(encodings.t(), x_flat)) | |
# self.ema_count.copy_(torch.sum(encodings, dim=0)) | |
x_flat, quantized, indices = self.encode(x) | |
encodings = F.one_hot(indices, M).float() | |
indices = indices.reshape(B, T) | |
if self.training and self.data_initialized.item() != 0: | |
self.ema_count = self.decay * self.ema_count + (1 - self.decay) * torch.sum(encodings, dim=0) | |
n = torch.sum(self.ema_count) | |
self.ema_count = (self.ema_count + self.epsilon) / (n + M * self.epsilon) * n | |
dw = torch.matmul(encodings.t(), x_flat) | |
self.ema_weight = self.decay * self.ema_weight + (1 - self.decay) * dw | |
self.embedding = self.ema_weight / self.ema_count.unsqueeze(-1) | |
if self.training and self.data_initialized.item() == 0: | |
self.data_initialized.fill_(1) | |
e_latent_loss = F.mse_loss(x, quantized.detach(), reduction='none') | |
nonpadding = (x.abs().sum(-1) > 0).float() | |
e_latent_loss = (e_latent_loss.mean(-1) * nonpadding).sum() / nonpadding.sum() | |
loss = self.commitment_cost * e_latent_loss | |
quantized = x + (quantized - x).detach() | |
avg_probs = torch.mean(encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) | |
if self.print_vq_prob: | |
print("| VQ code avg_probs: ", avg_probs) | |
return quantized, loss, indices, perplexity | |
class VQEmbedding(nn.Module): | |
def __init__(self, n_embeddings, embedding_dim, commitment_cost=0.25, lambda_kl=1.0): | |
super(VQEmbedding, self).__init__() | |
self.commitment_cost = commitment_cost | |
self.lambda_kl = lambda_kl | |
self.n_embeddings = n_embeddings | |
embedding = torch.Tensor(n_embeddings, embedding_dim) | |
self.register_buffer("embedding", embedding) | |
self.register_buffer('data_initialized', torch.zeros(1)) | |
def encode(self, x): | |
B, T, _ = x.shape | |
M, D = self.embedding.size() | |
x_flat = x.detach().reshape(-1, D) | |
distances = torch.addmm(torch.sum(self.embedding ** 2, dim=1) + | |
torch.sum(x_flat ** 2, dim=1, keepdim=True), | |
x_flat, self.embedding.t(), | |
alpha=-2.0, beta=1.0) # [B*T_mel, N_vq] | |
indices = torch.argmin(distances.float(), dim=-1) # [B*T_mel] | |
quantized = F.embedding(indices, self.embedding) | |
quantized = quantized.view_as(x) | |
return x_flat, quantized, indices | |
def forward(self, x): | |
""" | |
:param x: [B, T, D] | |
:return: [B, T, D] | |
""" | |
B, T, _ = x.shape | |
M, D = self.embedding.size() | |
x_flat, quantized, indices = self.encode(x) | |
encodings = F.one_hot(indices, M).float() | |
indices = indices.reshape(B, T) | |
# DeepMind def does not do this but I find I have to... ;\ | |
if self.training and self.data_initialized.item() == 0: | |
print('| running kmeans in VQVAE') # data driven initialization for the embeddings | |
rp = torch.randperm(x_flat.size(0)) | |
kd = kmeans2(x_flat[rp].data.cpu().numpy(), self.n_embeddings, minit='points') | |
self.embedding.copy_(torch.from_numpy(kd[0])) | |
self.data_initialized.fill_(1) | |
# TODO: this won't work in multi-GPU setups | |
x_flat, quantized, indices = self.encode(x) | |
encodings = F.one_hot(indices, M).float() | |
indices = indices.reshape(B, T) | |
# vector quantization cost that trains the embedding vectors | |
loss = self.commitment_cost * (x.detach() - quantized).pow(2).mean() + \ | |
(quantized - x.detach()).pow(2).mean() | |
loss *= self.lambda_kl | |
quantized = x + (quantized - x).detach() | |
avg_probs = torch.mean(encodings, dim=0) | |
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) | |
return quantized, loss, indices, perplexity | |