Spaces:
Build error
Build error
File size: 11,624 Bytes
8eb4303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import librosa
import numpy as np
import torch
from scipy.interpolate import interp1d
from scipy.ndimage import binary_erosion
from scipy.signal import medfilt
from utils.audio.pitch.extractor_utils import get_med_curve, clean_short_v_frag
def crepe_predict(audio, sr, model_capacity='full', center=True, step_size=10, verbose=1):
from crepe.core import to_viterbi_cents, to_local_average_cents
from crepe import get_activation
np.seterr(divide='ignore', invalid='ignore')
activation = get_activation(audio, sr, model_capacity=model_capacity,
center=center, step_size=step_size,
verbose=verbose)
confidence = activation.max(axis=1)
cents_v = to_viterbi_cents(activation)
frequency_v = 10 * 2 ** (cents_v / 1200)
frequency_v[np.isnan(frequency_v)] = 0
cents = to_local_average_cents(activation)
frequency = 10 * 2 ** (cents / 1200)
frequency[np.isnan(frequency)] = 0
time = np.arange(confidence.shape[0]) * step_size / 1000.0
return time, frequency_v, frequency, confidence, activation
def load_model(device, capacity='full'):
import torchcrepe
# Bind model and capacity
capacity = capacity
model = torchcrepe.Crepe(capacity)
# Load weights
file = os.path.join(os.path.dirname(torchcrepe.__file__), 'assets', f'{capacity}.pth')
model.load_state_dict(torch.load(file, map_location='cpu'))
# Place on device
model = model.to(torch.device(device))
# Eval mode
model.eval()
return model
def crepe_predict_torch(audio, sr, hop_length=None, model_capacity='full',
batch_size=None, device='cpu', pad=True):
from torchcrepe import preprocess, PITCH_BINS
import warnings
from crepe.core import to_viterbi_cents, to_local_average_cents
warnings.filterwarnings('ignore', message=r'Named tensors and all their associated APIs.*')
# Postprocessing breaks gradients, so just don't compute them
with torch.no_grad():
# Preprocess audio
generator = preprocess(audio,
sr,
hop_length,
batch_size,
device,
pad)
frames = next(generator)
# Infer independent probabilities for each pitch bin
model = load_model(device, model_capacity)
model = model.to(frames.device)
activation = model(frames)
del model
del frames
# shape=(batch, 360, time / hop_length)
activation = activation.reshape(-1, PITCH_BINS).cpu().numpy()
torch.cuda.empty_cache()
confidence = activation.max(axis=1)
cents_v = to_viterbi_cents(activation)
frequency_v = 10 * 2 ** (cents_v / 1200)
frequency_v[np.isnan(frequency_v)] = 0
cents = to_local_average_cents(activation)
frequency = 10 * 2 ** (cents / 1200)
frequency[np.isnan(frequency)] = 0
return frequency_v, frequency, confidence, activation
def cents_to_bins(cents):
"""Converts cents to pitch bins"""
CENTS_PER_BIN = 20 # cents
bins = (cents - 1997.3794084376191) / CENTS_PER_BIN
return np.round(bins).astype(int)
def cents_to_frequency(cents):
"""Converts cents to frequency in Hz"""
return 10 * 2 ** (cents / 1200)
def frequency_to_bins(frequency):
"""Convert frequency in Hz to pitch bins"""
return cents_to_bins(frequency_to_cents(frequency))
def frequency_to_cents(frequency):
"""Convert frequency in Hz to cents"""
return 1200 * np.log2(frequency / 10. + 1e-8)
def find_nearest_f0_in_piptrack(f0, pitches):
i_frame = np.arange(len(f0))
return pitches[i_frame, np.abs(f0[:, None] - pitches).argmin(-1)]
def f0_energy_corrector(wav_data_16k, f0_func, f0_min, f0_max, fix_octave_error=True):
hop_size = 256
win_size = hop_size * 6
sr = 16000
spec = np.abs(librosa.stft(wav_data_16k, n_fft=win_size, hop_length=hop_size,
win_length=win_size, pad_mode="constant").T)
T = spec.shape[0]
x_h256 = np.arange(0, 1, 1 / T)[:T]
x_h256[-1] = 1
f0 = f0_func(x_h256)
freqs = librosa.fft_frequencies(sr=sr, n_fft=win_size)
x_idx = np.arange(T)
def find_nearest_stft_bin(f0_):
return np.abs(freqs[None, :] - f0_[:, None]).argmin(-1)
def get_energy_mask(f0_lambda, hars=None, win_size=3):
if hars is None:
hars = [1]
mask = np.zeros([T, 10000]).astype(bool)
mask_bins = []
for multiple in hars:
f0_bin_idx = find_nearest_stft_bin(f0_lambda(f0, multiple))
for delta in range(-win_size // 2, 1 + win_size // 2):
y_idx = f0_bin_idx + delta
if np.max(y_idx) < spec.shape[1]:
mask_bins.append(spec[x_idx, y_idx])
mask[x_idx, y_idx] = 1
mask_bins = np.stack(mask_bins, 1)
energy_ = np.mean(mask_bins, 1)
return energy_, mask
bottom_idx = find_nearest_stft_bin(np.array([70]))[0]
bottom_energy = spec[:, :bottom_idx].mean()
pitches, _ = librosa.piptrack(
wav_data_16k, sr,
n_fft=win_size, win_length=win_size, hop_length=hop_size,
fmin=50, fmax=3000, ref=bottom_energy)
pitches = pitches.T[:T]
f0_piptrack = find_nearest_f0_in_piptrack(f0, pitches)
f0_raw = f0
f0 = f0_piptrack
# find uv first (for obtaining mean_energy_mharfhar)
energy_har, mask_har = get_energy_mask(lambda f0, m: f0 * m, [1, 2], 3)
energy_mhalfhar, mask_mhalfhar = get_energy_mask(lambda f0, m: f0 * (m - 0.5), [1], 5)
r_energy = energy_har / np.clip(energy_mhalfhar, 1e-8, None)
uv = np.zeros_like(f0).astype(bool)
uv |= r_energy < 10
uv |= (f0 > f0_max) | (f0 < f0_min)
uv |= energy_har < bottom_energy
mean_energy_mharfhar = np.clip(energy_mhalfhar[~uv].mean(), 1e-8, None)
if len(uv) > 0:
spec = np.clip(spec - spec[uv].mean(0)[None, :], 1e-8, None)
# fix octave error
r_energy_div_dict = {}
if fix_octave_error:
for div, mul, thres in [
(2, (1,), 20),
(3, (1, 2), 20),
(5, (1, 2, 3), 20),
]:
energy_div_har, mask_div_har = get_energy_mask(lambda f0, m: f0 / div * m, mul, 3)
r_energy_div = energy_div_har / mean_energy_mharfhar
r_energy_div = medfilt(r_energy_div, 5)
r_energy_div_dict[div] = r_energy_div
div_mask = (r_energy_div > thres) & (f0 / div > f0_min)
f0[div_mask] /= div
div_mask_erosion = binary_erosion(div_mask, iterations=2)
div_pos = sorted(np.where(div_mask_erosion)[0])
for pos in div_pos:
for s in range(10):
if pos - s not in div_pos and pos - s >= 0:
f0[pos - s] = pitches[pos - s, np.abs(f0[pos] - pitches[pos - s]).argmin()]
if pos + s not in div_pos and pos + s < T:
f0[pos + s] = pitches[pos + s, np.abs(f0[pos] - pitches[pos + s]).argmin()]
# find uv second
energy_har, mask_har = get_energy_mask(lambda f0, m: f0 * m, [1, 2], 3)
energy_mhalfhar, mask_mhalfhar = get_energy_mask(lambda f0, m: f0 * (m - 0.5), [1], 5)
energy_har_2, _ = get_energy_mask(lambda f0, m: f0 * m, [2], 3)
energy_mhalfhar_2, _ = get_energy_mask(lambda f0, m: f0 * (m - 0.5), [2, 3], 3)
r_energy = energy_har / np.clip(energy_mhalfhar, 1e-8, None)
r_energy = medfilt(r_energy, 3)
r_energy_2 = energy_har_2 / np.clip(energy_mhalfhar_2, 1e-8, None)
r_energy_2 = medfilt(r_energy_2, 3)
r_energy_2_mask = r_energy_2 < 3
r_energy_2_mask = binary_erosion(r_energy_2_mask, iterations=3)
uv = np.zeros_like(f0).astype(bool)
uv |= r_energy < 8
uv |= r_energy_2_mask
uv |= (f0 > f0_max) | (f0 < f0_min)
uv |= energy_har < bottom_energy
func_uv = interp1d(x_h256, uv, 'nearest')
func_f0_div = interp1d(x_h256, f0, 'nearest')
spec_log = np.log10(spec + 1e-8)
return func_uv, func_f0_div, {
'spec': spec_log,
'energy_har': energy_har, 'energy_halfhar': energy_mhalfhar,
'r_energy': r_energy, 'r_energy_2': r_energy_2,
'mask_har': mask_har, 'mask_halfhar': mask_mhalfhar,
'bottom_energy': bottom_energy,
'r_energy_div_dict': r_energy_div_dict,
'f0_piptrack': f0_piptrack,
'f0_raw': f0_raw
}
def crepe_with_corrector(wav_data, hop_size, audio_sample_rate, f0_min, f0_max, return_states=False, *args, **kwargs):
wav_data = wav_data.astype(np.double)
wav_data_16k = librosa.resample(wav_data, audio_sample_rate, 16000)
time, f0_10ms, f0_nov, confi, activation = crepe_predict(
wav_data_16k, 16000, step_size=10, model_capacity='small', center=True, verbose=0)
T_10ms = len(f0_10ms)
x_10ms = np.arange(0, 1, 1 / T_10ms)[:T_10ms]
x_10ms[-1] = 1.0
func_f0 = interp1d(x_10ms, f0_10ms, 'nearest')
n_mel_frames = int(len(wav_data) // hop_size)
x_new = np.arange(0, 1, 1 / n_mel_frames)[:n_mel_frames]
x_new[-1] = 1.0
# correct f0 using energy spec (first round)
func_uv, func_f0, states = f0_energy_corrector(wav_data_16k, func_f0, f0_min, f0_max, fix_octave_error=True)
f0_10ms = func_f0(x_10ms)
uv_10ms = (func_uv(x_10ms) > 1e-4) & (confi < 0.9)
uv_10ms = medfilt(uv_10ms.astype(float), 3) > 1e-4
states['activation'] = activation
states['confidence'] = confi
# viterbi by voiced chunk, to fix incorrect viterbi smoothing in UV border.
f0_10ms[uv_10ms] = 0
f0_10ms_new = np.zeros_like(f0_10ms).astype(float)
v_begin = -1
for i in range(T_10ms):
if not uv_10ms[i] and i < T_10ms - 1:
if v_begin == -1:
v_begin = i
elif v_begin != -1:
v_end = i - 1 if uv_10ms[i] else i
if v_end - v_begin > 3:
f0_bins = frequency_to_bins(f0_10ms[v_begin:v_end + 1])
for j, k in zip(range(v_begin, v_end + 1), f0_bins):
if f0_10ms[j] > 1e-4:
activation[j, k + 10:] /= 5
cents_v = to_viterbi_cents(activation[v_begin:v_end + 1])
f0__ = 10 * 2 ** (cents_v / 1200)
f0__[np.isnan(f0__)] = 0
f0_10ms_new[v_begin:v_end + 1] = f0__
v_begin = -1
f0_10ms = f0_10ms_new
# remove pitch deviated from median
f0_10ms[confi < 0.1] = 0
try:
x_med_curve, y_med_curve = get_med_curve(f0_10ms)
f0_med_curve = interp1d(np.array(x_med_curve), np.array(y_med_curve), 'nearest')(np.arange(len(f0_10ms)))
f0_10ms[(f0_10ms < f0_med_curve - 100) | (f0_10ms > f0_med_curve + 100)] = 0
states['f0_med_curve'] = interp1d(x_10ms, f0_med_curve)(x_new)
except:
pass
# print("| WARN: catch an Error in get_med_curve.")
# traceback.print_exc()
# correct f0 using energy spec (second round), for better UV
func_f0 = interp1d(x_10ms, f0_10ms, 'nearest')
func_uv, func_f0, states_ = f0_energy_corrector(wav_data_16k, func_f0, f0_min, f0_max, fix_octave_error=False)
del states_['r_energy_div_dict']
states.update(states_)
# interpolate f0
confi_new = interp1d(x_10ms, confi)(x_new)
f0 = func_f0(x_new)
uv = (clean_short_v_frag(f0) | (func_uv(x_new) > 1e-4)) & (confi_new < 0.9)
uv = medfilt(uv.astype(float), 3) > 1e-4
f0 = medfilt(f0, 3)
f0[uv] = 0
if return_states:
return f0, states
else:
return f0
|