| |
|
|
| import glob |
| import math |
| import os |
| import random |
| from copy import copy |
| from pathlib import Path |
|
|
| import cv2 |
| import matplotlib |
| import matplotlib.pyplot as plt |
| import numpy as np |
| import pandas as pd |
| import seaborn as sns |
| import torch |
| import yaml |
| from PIL import Image, ImageDraw, ImageFont |
| from scipy.signal import butter, filtfilt |
|
|
| from utils.general import xywh2xyxy, xyxy2xywh |
| from utils.metrics import fitness |
|
|
| |
| matplotlib.rc('font', **{'size': 11}) |
| matplotlib.use('Agg') |
|
|
|
|
| def color_list(): |
| |
| def hex2rgb(h): |
| return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) |
|
|
| return [hex2rgb(h) for h in matplotlib.colors.TABLEAU_COLORS.values()] |
|
|
|
|
| def hist2d(x, y, n=100): |
| |
| xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) |
| hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) |
| xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) |
| yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) |
| return np.log(hist[xidx, yidx]) |
|
|
|
|
| def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): |
| |
| def butter_lowpass(cutoff, fs, order): |
| nyq = 0.5 * fs |
| normal_cutoff = cutoff / nyq |
| return butter(order, normal_cutoff, btype='low', analog=False) |
|
|
| b, a = butter_lowpass(cutoff, fs, order=order) |
| return filtfilt(b, a, data) |
|
|
|
|
| def plot_one_box(x, img, color=None, label=None, line_thickness=3): |
| |
| tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 |
| color = color or [random.randint(0, 255) for _ in range(3)] |
| c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) |
| cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA) |
| if label: |
| tf = max(tl - 1, 1) |
| t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] |
| c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3 |
| cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) |
| cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA) |
|
|
|
|
| def plot_one_box_PIL(box, img, color=None, label=None, line_thickness=None): |
| img = Image.fromarray(img) |
| draw = ImageDraw.Draw(img) |
| line_thickness = line_thickness or max(int(min(img.size) / 200), 2) |
| draw.rectangle(box, width=line_thickness, outline=tuple(color)) |
| if label: |
| fontsize = max(round(max(img.size) / 40), 12) |
| font = ImageFont.truetype("Arial.ttf", fontsize) |
| txt_width, txt_height = font.getsize(label) |
| draw.rectangle([box[0], box[1] - txt_height + 4, box[0] + txt_width, box[1]], fill=tuple(color)) |
| draw.text((box[0], box[1] - txt_height + 1), label, fill=(255, 255, 255), font=font) |
| return np.asarray(img) |
|
|
|
|
| def plot_wh_methods(): |
| |
| |
| x = np.arange(-4.0, 4.0, .1) |
| ya = np.exp(x) |
| yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2 |
|
|
| fig = plt.figure(figsize=(6, 3), tight_layout=True) |
| plt.plot(x, ya, '.-', label='YOLOv3') |
| plt.plot(x, yb ** 2, '.-', label='YOLOR ^2') |
| plt.plot(x, yb ** 1.6, '.-', label='YOLOR ^1.6') |
| plt.xlim(left=-4, right=4) |
| plt.ylim(bottom=0, top=6) |
| plt.xlabel('input') |
| plt.ylabel('output') |
| plt.grid() |
| plt.legend() |
| fig.savefig('comparison.png', dpi=200) |
|
|
|
|
| def output_to_target(output): |
| |
| targets = [] |
| for i, o in enumerate(output): |
| for *box, conf, cls in o.cpu().numpy(): |
| targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) |
| return np.array(targets) |
|
|
|
|
| def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16): |
| |
|
|
| if isinstance(images, torch.Tensor): |
| images = images.cpu().float().numpy() |
| if isinstance(targets, torch.Tensor): |
| targets = targets.cpu().numpy() |
|
|
| |
| if np.max(images[0]) <= 1: |
| images *= 255 |
|
|
| tl = 3 |
| tf = max(tl - 1, 1) |
| bs, _, h, w = images.shape |
| bs = min(bs, max_subplots) |
| ns = np.ceil(bs ** 0.5) |
|
|
| |
| scale_factor = max_size / max(h, w) |
| if scale_factor < 1: |
| h = math.ceil(scale_factor * h) |
| w = math.ceil(scale_factor * w) |
|
|
| colors = color_list() |
| mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) |
| for i, img in enumerate(images): |
| if i == max_subplots: |
| break |
|
|
| block_x = int(w * (i // ns)) |
| block_y = int(h * (i % ns)) |
|
|
| img = img.transpose(1, 2, 0) |
| if scale_factor < 1: |
| img = cv2.resize(img, (w, h)) |
|
|
| mosaic[block_y:block_y + h, block_x:block_x + w, :] = img |
| if len(targets) > 0: |
| image_targets = targets[targets[:, 0] == i] |
| boxes = xywh2xyxy(image_targets[:, 2:6]).T |
| classes = image_targets[:, 1].astype('int') |
| labels = image_targets.shape[1] == 6 |
| conf = None if labels else image_targets[:, 6] |
|
|
| if boxes.shape[1]: |
| if boxes.max() <= 1.01: |
| boxes[[0, 2]] *= w |
| boxes[[1, 3]] *= h |
| elif scale_factor < 1: |
| boxes *= scale_factor |
| boxes[[0, 2]] += block_x |
| boxes[[1, 3]] += block_y |
| for j, box in enumerate(boxes.T): |
| cls = int(classes[j]) |
| color = colors[cls % len(colors)] |
| cls = names[cls] if names else cls |
| if labels or conf[j] > 0.25: |
| label = '%s' % cls if labels else '%s %.1f' % (cls, conf[j]) |
| plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl) |
|
|
| |
| if paths: |
| label = Path(paths[i]).name[:40] |
| t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0] |
| cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf, |
| lineType=cv2.LINE_AA) |
|
|
| |
| cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3) |
|
|
| if fname: |
| r = min(1280. / max(h, w) / ns, 1.0) |
| mosaic = cv2.resize(mosaic, (int(ns * w * r), int(ns * h * r)), interpolation=cv2.INTER_AREA) |
| |
| Image.fromarray(mosaic).save(fname) |
| return mosaic |
|
|
|
|
| def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): |
| |
| optimizer, scheduler = copy(optimizer), copy(scheduler) |
| y = [] |
| for _ in range(epochs): |
| scheduler.step() |
| y.append(optimizer.param_groups[0]['lr']) |
| plt.plot(y, '.-', label='LR') |
| plt.xlabel('epoch') |
| plt.ylabel('LR') |
| plt.grid() |
| plt.xlim(0, epochs) |
| plt.ylim(0) |
| plt.savefig(Path(save_dir) / 'LR.png', dpi=200) |
| plt.close() |
|
|
|
|
| def plot_test_txt(): |
| |
| x = np.loadtxt('test.txt', dtype=np.float32) |
| box = xyxy2xywh(x[:, :4]) |
| cx, cy = box[:, 0], box[:, 1] |
|
|
| fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) |
| ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) |
| ax.set_aspect('equal') |
| plt.savefig('hist2d.png', dpi=300) |
|
|
| fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) |
| ax[0].hist(cx, bins=600) |
| ax[1].hist(cy, bins=600) |
| plt.savefig('hist1d.png', dpi=200) |
|
|
|
|
| def plot_targets_txt(): |
| |
| x = np.loadtxt('targets.txt', dtype=np.float32).T |
| s = ['x targets', 'y targets', 'width targets', 'height targets'] |
| fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) |
| ax = ax.ravel() |
| for i in range(4): |
| ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std())) |
| ax[i].legend() |
| ax[i].set_title(s[i]) |
| plt.savefig('targets.jpg', dpi=200) |
|
|
|
|
| def plot_study_txt(path='', x=None): |
| |
| fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True) |
| |
|
|
| fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) |
| |
| for f in sorted(Path(path).glob('study*.txt')): |
| y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T |
| x = np.arange(y.shape[1]) if x is None else np.array(x) |
| s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)'] |
| |
| |
| |
|
|
| j = y[3].argmax() + 1 |
| ax2.plot(y[6, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8, |
| label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) |
|
|
| ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], |
| 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') |
|
|
| ax2.grid(alpha=0.2) |
| ax2.set_yticks(np.arange(20, 60, 5)) |
| ax2.set_xlim(0, 57) |
| ax2.set_ylim(30, 55) |
| ax2.set_xlabel('GPU Speed (ms/img)') |
| ax2.set_ylabel('COCO AP val') |
| ax2.legend(loc='lower right') |
| plt.savefig(str(Path(path).name) + '.png', dpi=300) |
|
|
|
|
| def plot_labels(labels, names=(), save_dir=Path(''), loggers=None): |
| |
| print('Plotting labels... ') |
| c, b = labels[:, 0], labels[:, 1:].transpose() |
| nc = int(c.max() + 1) |
| colors = color_list() |
| x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) |
|
|
| |
| sns.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) |
| plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) |
| plt.close() |
|
|
| |
| matplotlib.use('svg') |
| ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() |
| ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) |
| ax[0].set_ylabel('instances') |
| if 0 < len(names) < 30: |
| ax[0].set_xticks(range(len(names))) |
| ax[0].set_xticklabels(names, rotation=90, fontsize=10) |
| else: |
| ax[0].set_xlabel('classes') |
| sns.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) |
| sns.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) |
|
|
| |
| labels[:, 1:3] = 0.5 |
| labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 |
| img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) |
| for cls, *box in labels[:1000]: |
| ImageDraw.Draw(img).rectangle(box, width=1, outline=colors[int(cls) % 10]) |
| ax[1].imshow(img) |
| ax[1].axis('off') |
|
|
| for a in [0, 1, 2, 3]: |
| for s in ['top', 'right', 'left', 'bottom']: |
| ax[a].spines[s].set_visible(False) |
|
|
| plt.savefig(save_dir / 'labels.jpg', dpi=200) |
| matplotlib.use('Agg') |
| plt.close() |
|
|
| |
| for k, v in loggers.items() or {}: |
| if k == 'wandb' and v: |
| v.log({"Labels": [v.Image(str(x), caption=x.name) for x in save_dir.glob('*labels*.jpg')]}, commit=False) |
|
|
|
|
| def plot_evolution(yaml_file='data/hyp.finetune.yaml'): |
| |
| with open(yaml_file) as f: |
| hyp = yaml.load(f, Loader=yaml.SafeLoader) |
| x = np.loadtxt('evolve.txt', ndmin=2) |
| f = fitness(x) |
| |
| plt.figure(figsize=(10, 12), tight_layout=True) |
| matplotlib.rc('font', **{'size': 8}) |
| for i, (k, v) in enumerate(hyp.items()): |
| y = x[:, i + 7] |
| |
| mu = y[f.argmax()] |
| plt.subplot(6, 5, i + 1) |
| plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none') |
| plt.plot(mu, f.max(), 'k+', markersize=15) |
| plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) |
| if i % 5 != 0: |
| plt.yticks([]) |
| print('%15s: %.3g' % (k, mu)) |
| plt.savefig('evolve.png', dpi=200) |
| print('\nPlot saved as evolve.png') |
|
|
|
|
| def profile_idetection(start=0, stop=0, labels=(), save_dir=''): |
| |
| ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() |
| s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] |
| files = list(Path(save_dir).glob('frames*.txt')) |
| for fi, f in enumerate(files): |
| try: |
| results = np.loadtxt(f, ndmin=2).T[:, 90:-30] |
| n = results.shape[1] |
| x = np.arange(start, min(stop, n) if stop else n) |
| results = results[:, x] |
| t = (results[0] - results[0].min()) |
| results[0] = x |
| for i, a in enumerate(ax): |
| if i < len(results): |
| label = labels[fi] if len(labels) else f.stem.replace('frames_', '') |
| a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) |
| a.set_title(s[i]) |
| a.set_xlabel('time (s)') |
| |
| |
| for side in ['top', 'right']: |
| a.spines[side].set_visible(False) |
| else: |
| a.remove() |
| except Exception as e: |
| print('Warning: Plotting error for %s; %s' % (f, e)) |
|
|
| ax[1].legend() |
| plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) |
|
|
|
|
| def plot_results_overlay(start=0, stop=0): |
| |
| s = ['train', 'train', 'train', 'Precision', 'mAP@0.5', 'val', 'val', 'val', 'Recall', 'mAP@0.5:0.95'] |
| t = ['Box', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] |
| for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')): |
| results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T |
| n = results.shape[1] |
| x = range(start, min(stop, n) if stop else n) |
| fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True) |
| ax = ax.ravel() |
| for i in range(5): |
| for j in [i, i + 5]: |
| y = results[j, x] |
| ax[i].plot(x, y, marker='.', label=s[j]) |
| |
| |
|
|
| ax[i].set_title(t[i]) |
| ax[i].legend() |
| ax[i].set_ylabel(f) if i == 0 else None |
| fig.savefig(f.replace('.txt', '.png'), dpi=200) |
|
|
|
|
| def plot_results(start=0, stop=0, bucket='', id=(), labels=(), save_dir=''): |
| |
| fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) |
| ax = ax.ravel() |
| s = ['Box', 'Objectness', 'Classification', 'Precision', 'Recall', |
| 'val Box', 'val Objectness', 'val Classification', 'mAP@0.5', 'mAP@0.5:0.95'] |
| if bucket: |
| |
| files = ['results%g.txt' % x for x in id] |
| c = ('gsutil cp ' + '%s ' * len(files) + '.') % tuple('gs://%s/results%g.txt' % (bucket, x) for x in id) |
| os.system(c) |
| else: |
| files = list(Path(save_dir).glob('results*.txt')) |
| assert len(files), 'No results.txt files found in %s, nothing to plot.' % os.path.abspath(save_dir) |
| for fi, f in enumerate(files): |
| try: |
| results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T |
| n = results.shape[1] |
| x = range(start, min(stop, n) if stop else n) |
| for i in range(10): |
| y = results[i, x] |
| if i in [0, 1, 2, 5, 6, 7]: |
| y[y == 0] = np.nan |
| |
| label = labels[fi] if len(labels) else f.stem |
| ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8) |
| ax[i].set_title(s[i]) |
| |
| |
| except Exception as e: |
| print('Warning: Plotting error for %s; %s' % (f, e)) |
|
|
| ax[1].legend() |
| fig.savefig(Path(save_dir) / 'results.png', dpi=200) |
|
|