import spaces import gradio as gr import os import torch import matplotlib.pyplot as plt import numpy as np import matplotlib from PIL import Image from transformers import AutoModelForCausalLM matplotlib.use("Agg") # Use Agg backend for non-interactive plotting os.environ["HF_TOKEN"] = os.environ.get("TOKEN_FROM_SECRET") or True model = AutoModelForCausalLM.from_pretrained( "vikhyatk/moondream-next", trust_remote_code=True, torch_dtype=torch.float16, device_map={"": "cuda"}, revision="64ce9d45e8603058826ab339d3bb0f48f7289b1f" ) def visualize_faces_and_gaze(face_boxes, gaze_points=None, image=None, show_plot=True): """Visualization function that can handle faces without gaze data""" # Calculate figure size based on image aspect ratio if image is not None: height, width = image.shape[:2] aspect_ratio = width / height fig_height = 6 # Base height fig_width = fig_height * aspect_ratio else: width, height = 800, 600 fig_width, fig_height = 10, 8 # Create figure with tight layout fig = plt.figure(figsize=(fig_width, fig_height)) ax = fig.add_subplot(111) if image is not None: ax.imshow(image) else: ax.set_facecolor("#1a1a1a") fig.patch.set_facecolor("#1a1a1a") colors = plt.cm.rainbow(np.linspace(0, 1, len(face_boxes))) for i, (face_box, color) in enumerate(zip(face_boxes, colors)): hex_color = "#{:02x}{:02x}{:02x}".format( int(color[0] * 255), int(color[1] * 255), int(color[2] * 255) ) x, y, width_box, height_box = face_box face_center_x = x + width_box / 2 face_center_y = y + height_box / 2 # Draw face bounding box face_rect = plt.Rectangle( (x, y), width_box, height_box, fill=False, color=hex_color, linewidth=2 ) ax.add_patch(face_rect) # Draw gaze line if gaze data is available if gaze_points is not None and i < len(gaze_points) and gaze_points[i] is not None: gaze_x, gaze_y = gaze_points[i] points = 50 alphas = np.linspace(0.8, 0, points) x_points = np.linspace(face_center_x, gaze_x, points) y_points = np.linspace(face_center_y, gaze_y, points) for j in range(points - 1): ax.plot( [x_points[j], x_points[j + 1]], [y_points[j], y_points[j + 1]], color=hex_color, alpha=alphas[j], linewidth=4, ) ax.scatter(gaze_x, gaze_y, color=hex_color, s=100, zorder=5) ax.scatter(gaze_x, gaze_y, color="white", s=50, zorder=6) # Set plot limits and remove axes ax.set_xlim(0, width) ax.set_ylim(height, 0) ax.set_aspect("equal") ax.set_xticks([]) ax.set_yticks([]) # Remove padding around the plot plt.subplots_adjust(left=0, right=1, bottom=0, top=1) return fig @spaces.GPU(duration=15) def process_image(input_image, use_ensemble): if input_image is None: return None, "" try: # Convert to PIL Image if needed if isinstance(input_image, np.ndarray): pil_image = Image.fromarray(input_image) else: pil_image = input_image # Get image encoding enc_image = model.encode_image(pil_image) if use_ensemble: flipped_pil = pil_image.copy().transpose(method=Image.FLIP_LEFT_RIGHT) flip_enc_image = model.encode_image(flipped_pil) else: flip_enc_image = None # Detect faces faces = model.detect(enc_image, "face")["objects"] if not faces: return None, "No faces detected in the image." # Process each face face_boxes = [] gaze_points = [] for face in faces: # Add face bounding box regardless of gaze detection face_box = ( face["x_min"] * pil_image.width, face["y_min"] * pil_image.height, (face["x_max"] - face["x_min"]) * pil_image.width, (face["y_max"] - face["y_min"]) * pil_image.height, ) face_center = ( (face["x_min"] + face["x_max"]) / 2, (face["y_min"] + face["y_max"]) / 2 ) face_boxes.append(face_box) # Try to detect gaze gaze_settings = { "prioritize_accuracy": use_ensemble, "flip_enc_img": flip_enc_image } gaze = model.detect_gaze(enc_image, face=face, eye=face_center, unstable_settings=gaze_settings)["gaze"] if gaze is not None: gaze_point = ( gaze["x"] * pil_image.width, gaze["y"] * pil_image.height, ) gaze_points.append(gaze_point) else: gaze_points.append(None) # Create visualization image_array = np.array(pil_image) fig = visualize_faces_and_gaze( face_boxes, gaze_points, image=image_array, show_plot=False ) faces_with_gaze = sum(1 for gp in gaze_points if gp is not None) status = f"Found {len(faces)} faces. {len(faces) - faces_with_gaze} gazing out of frame." return fig, status except Exception as e: return None, f"Error processing image: {str(e)}" with gr.Blocks(title="Moondream Gaze Detection") as app: gr.Markdown("# 🌔 Moondream Gaze Detection") gr.Markdown("Upload an image to detect faces and visualize their gaze directions. Join the [Moondream Discord server](https://discord.com/invite/tRUdpjDQfH) if you have questions about how this works.") with gr.Row(): with gr.Column(): input_image = gr.Image(label="Input Image", type="pil") use_ensemble = gr.Checkbox( label="Use Ensemble Mode", value=False, info="Ensemble mode combines multiple predictions for higher accuracy." ) with gr.Column(): output_text = gr.Textbox(label="Status") output_plot = gr.Plot(label="Visualization") input_image.change( fn=process_image, inputs=[input_image, use_ensemble], outputs=[output_plot, output_text] ) use_ensemble.change( fn=process_image, inputs=[input_image, use_ensemble], outputs=[output_plot, output_text] ) gr.Examples( examples=["demo1.jpg", "demo2.jpg", "demo3.jpg", "demo4.jpg", "demo5.jpg", "demo6.jpg", "demo7.jpg", "demo8.jpg"], inputs=input_image, ) if __name__ == "__main__": app.launch()