File size: 11,756 Bytes
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
0d1ee8d
1f47c3b
 
 
 
 
 
 
0d1ee8d
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d1ee8d
 
 
 
 
 
 
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d1ee8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d1ee8d
 
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa3b3c
 
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d1ee8d
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d1ee8d
 
 
 
 
 
1f47c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d1ee8d
 
 
1f47c3b
 
 
 
 
0d1ee8d
 
 
1f47c3b
9fa3b3c
1f47c3b
 
 
0d1ee8d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
from dotenv import load_dotenv
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.decomposition import NMF
from sklearn.manifold import TSNE

from yt_api import YouTubeAPI
from maps import lang_map


# Load app settings
load_dotenv()
YT_API_KEY = os.getenv('YT_API_KEY')
MAX_COMMENT_SIZE = int(os.getenv('MAX_COMMENT_SIZE'))
PRED_BATCH_SIZE = int(os.getenv('PRED_BATCH_SIZE'))
LANG_DETECTION_CONF = float(os.getenv('LANG_DETECTION_CONF'))


@st.cache_resource
def init_emotions_model():
    classifier = pipeline(
        task="text-classification",
        model="SamLowe/roberta-base-go_emotions",
        top_k=None)

    return classifier


@st.cache_resource
def init_embedding_model():
    model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
    return model


@st.cache_resource
def init_lang_model():
    model_ckpt = "papluca/xlm-roberta-base-language-detection"
    pipe = pipeline("text-classification", model=model_ckpt)
    return pipe


def predict_emotions(df, clf):
    """
    Predicts emotions for every `text_original` in a DataFrame `df` with a
    classifier `clf`.
    Returns a DataFrame with emotion columns.
    """
    # Predict emotions in batches
    text_list = df['text_original'].to_list()
    batch_size = PRED_BATCH_SIZE
    text_batches = [text_list[i:i + batch_size]
                    for i in range(0, len(text_list), batch_size)]
    preds = [comment_emotions
             for text_batch in text_batches
             for comment_emotions in clf(text_batch)]

    # Add predictions to DataFrame
    preds_df = pd.DataFrame([{emotion['label']: emotion['score']
                            for emotion in pred} for pred in preds])
    df = pd.concat([df, preds_df], axis=1)

    return df


def detect_languages(df, clf):
    """
    Detects languages for every `text_original` in a DataFrame `df` with a
    classifier `clf`. Takes the language with the highest score.
    Returns a DataFrame with `predicted_language` column.
    """
    # Detect languages in batches
    text_list = df['text_original'].to_list()
    batch_size = PRED_BATCH_SIZE
    text_batches = [text_list[i:i + batch_size]
                    for i in range(0, len(text_list), batch_size)]
    preds = [batch_preds[0]['label']
             if batch_preds[0]['score'] > LANG_DETECTION_CONF
             else None
             for text_batch in text_batches
             for batch_preds in clf(text_batch, top_k=1, truncation=True)]

    # Add predictions to DataFrame
    df['predicted_language'] = preds

    return df


def emotion_dist_plot(df, emotion_cols):
    """
    Creates an emotion distribution plotly figure from `df` DataFrame
    and `emotion_cols` and returns it.
    """
    fig = px.bar(df[emotion_cols].sum().sort_values(ascending=False))
    fig.update_layout(title_text="Emotion Distribution",
                      width=2000)

    return fig


def nmf_plots(df,
              nmf_components,
              tfidf_max_features,
              tfidf_stop_words='english'
              ):
    """
    Converts all `text_original` values of `df` DataFrame to TF-IDF features
    and performs Non-negative matrix factorization on them.

    Returns a tuple of the modified DataFrame with NMF values and a list of
    plotly figures (`df`, [plotly figures]).
    """
    # Convert to TF-IDF features
    vectorizer = TfidfVectorizer(max_features=tfidf_max_features,
                                 stop_words=tfidf_stop_words)
    embeddings = vectorizer.fit_transform(df['text_original'])

    # Get feature_names (words) from the vectorizer
    feature_names = vectorizer.get_feature_names_out()

    # Perform NMF
    nmf = NMF(n_components=nmf_components)
    nmf_embeddings = nmf.fit_transform(embeddings).T
    topic_cols = [f'topic_{topic_num+1}'
                  for topic_num in range(nmf_components)]

    # Add NMF values to the DataFrame
    for i, col in enumerate(topic_cols):
        df[col] = nmf_embeddings[i]

    # Get word values for every topic
    word_df = pd.DataFrame(
        nmf.components_.T,
        columns=topic_cols,
        index=feature_names
    )

    # Plot word distributions of each topic
    topic_words_fig = make_subplots(
        rows=1, cols=nmf_components,
        subplot_titles=topic_cols)

    for i, col in enumerate(topic_cols):
        topic_words = word_df[col].sort_values(ascending=False)
        top_topic_words = topic_words[:top_words_in_topic]
        topic_words_fig.add_trace(go.Bar(y=top_topic_words.index,
                                         x=top_topic_words.values,
                                         orientation='h',
                                         base=0),
                                  row=1, col=i+1)
    topic_words_fig.update_layout(title_text="Topic Word Distributions",
                                  showlegend=False)

    # Plot topic contribution for the dataset
    for col in topic_cols:
        df[col + '_cumsum'] = df[col].cumsum()
    for col in topic_cols:
        cumsum_sum = df[[col + '_cumsum' for col in topic_cols]].sum(axis=1)
        df[col + '_percentage'] = df[col + '_cumsum'] / cumsum_sum
    contributions_fig = stacked_area_plot(
        x=df['published_at'],
        y_list=[df[f'topic_{i+1}_percentage'] for i in range(nmf_components)],
        names=topic_cols)

    return df, [topic_words_fig, contributions_fig]


def tsne_plots(df, encoder, emotion_cols, color_emotion, tsne_perplexity):
    """
    Encodes all `text_original` values of `df` DataFrame with `encoder`,
    uses t-SNE algorithm for visualization on these embeddings and on
    predicted emotions if they were predicted.
    """
    # Encode and add embeddings to the DataFrame
    embeddings = encoder.encode(df['text_original'])
    embedding_cols = [f'embedding_{i+1}' for i in range(embeddings.shape[1])]
    df = pd.concat([df, pd.DataFrame(embeddings, columns=embedding_cols)],
                   axis=1)

    # t-SNE
    TSNE_COMPONENTS = 2
    tsne = TSNE(
        n_components=2,
        perplexity=tsne_perplexity,
    )

    # Also use predicted emotions
    if emotion_cols:
        tsne_cols = embedding_cols + emotion_cols
        color = color_emotion
        hover_data = ['first_emotion', 'second_emotion', 'text_original']
    else:
        tsne_cols = embedding_cols
        color = None
        hover_data = 'text_original'

    tsne_results = tsne.fit_transform(df[tsne_cols])
    tsne_results = pd.DataFrame(
        tsne_results,
        columns=[f'tsne_{i+1}' for i in range(TSNE_COMPONENTS)]
    )

    df = pd.concat([df, tsne_results], axis=1)

    # 2D Visualization
    fig2d = px.scatter(
        df,
        x='tsne_1',
        y='tsne_2',
        color=color,
        hover_data=hover_data
    )
    fig2d.update_layout(
        title_text="t-SNE Visualization"
    )

    # 3D Visualization with date as the third axis
    fig3d = px.scatter_3d(
        df,
        x='published_at',
        y='tsne_1',
        z='tsne_2',
        color=color,
        hover_data=hover_data
    )
    fig3d.update_layout(
        title_text="t-SNE Visualization Over Time"
    )

    return df, [fig2d, fig3d]


def stacked_area_plot(x, y_list, names):
    """Creates plotly stacked area plot. Returns a figure of that plot."""
    fig = go.Figure()
    for y, name in zip(y_list, names):
        fig.add_trace(go.Scatter(
            x=x, y=y*100,
            mode='lines',
            line=dict(width=0.5),
            stackgroup='one',
            name=name,
        ))

    fig.update_layout(
        showlegend=True,
        xaxis_type='category',
        yaxis=dict(
            type='linear',
            range=[0, 100],
            ticksuffix='%')
        )

    fig.update_layout(title_text="Topic Contribution")

    return fig


def add_top_2_emotions(row):
    emotions = row[emotion_cols].sort_values(ascending=False)
    row['first_emotion'] = emotions.index[0]
    row['second_emotion'] = emotions.index[1]
    return row


st.set_page_config(layout='wide')
st.title("Social-Stat")

# Load models
emotions_clf = init_emotions_model()
sentence_encoder = init_embedding_model()
lang_model = init_lang_model()

# Init YouTube API
yt_api = YouTubeAPI(
    api_key=YT_API_KEY,
    max_comment_size=MAX_COMMENT_SIZE
)

# Input form
with st.form(key='input'):
    video_id = st.text_input("Video ID")

    # Emotions
    emotions_checkbox = st.checkbox(
        "Predict Emotions",
        value=True,
    )

    # NMF
    nmf_checkbox = st.checkbox(
        "Non-Negative Matrix Factorization",
        value=True,
    )

    nmf_components = st.slider(
        "Topics (NMF Components)",
        min_value=2,
        max_value=20,
        value=10,
        step=1,
    )

    tfidf_max_features = st.select_slider(
        "Words (TF-IDF Vectorizer Max Features)",
        options=list(range(10, 501)) + [None],
        value=100,
    )

    top_words_in_topic = st.slider(
        "Top Topic Words",
        min_value=1,
        max_value=50,
        value=10,
        step=1,
    )

    # t-SNE
    tsne_checkbox = st.checkbox(
        "t-SNE Visualization",
        value=True,
    )

    tsne_perplexity = st.slider(
        "t-SNE Perplexity",
        min_value=5,
        max_value=50,
        value=10,
        step=1,
    )

    tsne_color_emotion = st.selectbox(
        "Emotion For The Plot Color",
        options=['first_emotion', 'second_emotion']
    )

    # Language Map
    map_checkbox = st.checkbox(
        "Language Map",
        value=True,
    )

    submit = st.form_submit_button("Analyze")


if submit:
    # Get comments
    try:
        bad_id = False
        comments = yt_api.get_comments(video_id)
    except KeyError:
        st.write("Video not found.")
        bad_id = True

    if not bad_id:
        plots = []

        # Convert to pandas DataFrame and sort by publishing date
        df = pd.DataFrame(comments).sort_values('published_at')

        emotion_cols = []
        if emotions_checkbox:
            # Predict emotions
            df = predict_emotions(df, emotions_clf)
            emotion_cols = list(df.columns[11:])

            # Get emotion distribution figure
            emotion_fig = emotion_dist_plot(df, emotion_cols)

            # TODO: Get emotion contribution figure

            # Get top 2 emotions
            df = df.apply(add_top_2_emotions, axis=1)

        if nmf_checkbox:
            # NMF
            df, nmf_figs = nmf_plots(df, nmf_components, tfidf_max_features)
            plots.extend(nmf_figs)

        if tsne_checkbox:
            # t-SNE visualization
            df, tsne_figs = tsne_plots(df,
                                       sentence_encoder,
                                       emotion_cols,
                                       tsne_color_emotion,
                                       tsne_perplexity)
            plots.extend(tsne_figs)

        if map_checkbox:
            df = detect_languages(df, lang_model)
            map_figure = lang_map(df)

        # Plot all figures
        if emotions_checkbox:
            st.plotly_chart(emotion_fig, use_container_width=True)

        if map_checkbox:
            st.plotly_chart(map_figure, use_container_width=True)

        for i, plot in enumerate(plots):
            st.plotly_chart(
                plot, sharing='streamlit',
                theme='streamlit',
                use_container_width=True)

        # Show the final DataFrame
        st.dataframe(df)