m-a-mohsen
commited on
Commit
·
e426d25
1
Parent(s):
9da93f4
match streamlit
Browse files
app.py
CHANGED
@@ -67,7 +67,7 @@ def classify_image(image):
|
|
67 |
result_html = f"""
|
68 |
<h2>Classification Result</h2>
|
69 |
<p><strong>Predicted Class:</strong> {predicted_label}</p>
|
70 |
-
<p><strong>
|
71 |
"""
|
72 |
|
73 |
# Return the result formatted in HTML
|
@@ -79,9 +79,10 @@ iface = gr.Interface(
|
|
79 |
fn=classify_image,
|
80 |
inputs=gr.Image(type="numpy", label="Upload an image"),
|
81 |
outputs=gr.HTML(), # Output formatted with HTML
|
82 |
-
title="
|
83 |
-
description="""<h1
|
84 |
-
<p>
|
|
|
85 |
|
86 |
<h2>Usage Instructions</h2>
|
87 |
|
@@ -89,10 +90,11 @@ iface = gr.Interface(
|
|
89 |
<li>Click the "Choose File" button to upload an image related to intracranial hemorrhage.</li>
|
90 |
<li>Wait a few seconds while the model processes the image.</li>
|
91 |
<li>The result will show the predicted class related to intracranial hemorrhage.</li>
|
92 |
-
<li>The
|
93 |
</ol>
|
94 |
|
95 |
<p>This model can identify classes of intracranial hemorrhage, such as "epidural", "intraparenchymal", "intraventricular", "normal", "subarachnoid", and "subdural".</p>
|
|
|
96 |
|
97 |
<p>Please note that this is a demonstration model and the results may not be accurate for clinical purposes.</p>""",
|
98 |
)
|
|
|
67 |
result_html = f"""
|
68 |
<h2>Classification Result</h2>
|
69 |
<p><strong>Predicted Class:</strong> {predicted_label}</p>
|
70 |
+
<p><strong>Probabilities(needs some work):</strong> {probabilities}</p>
|
71 |
"""
|
72 |
|
73 |
# Return the result formatted in HTML
|
|
|
79 |
fn=classify_image,
|
80 |
inputs=gr.Image(type="numpy", label="Upload an image"),
|
81 |
outputs=gr.HTML(), # Output formatted with HTML
|
82 |
+
title="",
|
83 |
+
description="""<h1>🧠 Intracranial Hemorrhage Detector</h1>
|
84 |
+
<p>Made with ❤️ by: Ines, Julia, Mo and Sep</p>
|
85 |
+
|
86 |
|
87 |
<h2>Usage Instructions</h2>
|
88 |
|
|
|
90 |
<li>Click the "Choose File" button to upload an image related to intracranial hemorrhage.</li>
|
91 |
<li>Wait a few seconds while the model processes the image.</li>
|
92 |
<li>The result will show the predicted class related to intracranial hemorrhage.</li>
|
93 |
+
<li>The Probability of the classification will also be displayed.</li>
|
94 |
</ol>
|
95 |
|
96 |
<p>This model can identify classes of intracranial hemorrhage, such as "epidural", "intraparenchymal", "intraventricular", "normal", "subarachnoid", and "subdural".</p>
|
97 |
+
<p>This Gradio application allows classifying images related to intracranial hemorrhage using a Vision Transformer (ViT) model.</p>
|
98 |
|
99 |
<p>Please note that this is a demonstration model and the results may not be accurate for clinical purposes.</p>""",
|
100 |
)
|