# import html # # import gradio as gr # # import modules.textual_inversion.textual_inversion # from modules import sd_hijack, shared # # # def create_embedding(name, initialization_text, nvpt, overwrite_old): # filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text) # # sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # # return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", "" # # # def train_embedding(*args): # # assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible' # # apply_optimizations = shared.opts.training_xattention_optimizations # try: # if not apply_optimizations: # sd_hijack.undo_optimizations() # # embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args) # # res = f""" # Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps. # Embedding saved to {html.escape(filename)} # """ # return res, "" # except Exception: # raise # finally: # if not apply_optimizations: # sd_hijack.apply_optimizations() #