from __future__ import annotations import logging import os from functools import cached_property from typing import TYPE_CHECKING, Callable import cv2 import numpy as np import torch from modules import devices, errors, face_restoration, shared from modules_forge.utils import prepare_free_memory if TYPE_CHECKING: from facexlib.utils.face_restoration_helper import FaceRestoreHelper logger = logging.getLogger(__name__) def bgr_image_to_rgb_tensor(img: np.ndarray) -> torch.Tensor: """Convert a BGR NumPy image in [0..1] range to a PyTorch RGB float32 tensor.""" assert img.shape[2] == 3, "image must be RGB" if img.dtype == "float64": img = img.astype("float32") img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return torch.from_numpy(img.transpose(2, 0, 1)).float() def rgb_tensor_to_bgr_image(tensor: torch.Tensor, *, min_max=(0.0, 1.0)) -> np.ndarray: """ Convert a PyTorch RGB tensor in range `min_max` to a BGR NumPy image in [0..1] range. """ tensor = tensor.squeeze(0).float().detach().cpu().clamp_(*min_max) tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) assert tensor.dim() == 3, "tensor must be RGB" img_np = tensor.numpy().transpose(1, 2, 0) if img_np.shape[2] == 1: # gray image, no RGB/BGR required return np.squeeze(img_np, axis=2) return cv2.cvtColor(img_np, cv2.COLOR_BGR2RGB) def create_face_helper(device) -> FaceRestoreHelper: from facexlib.detection import retinaface from facexlib.utils.face_restoration_helper import FaceRestoreHelper if hasattr(retinaface, 'device'): retinaface.device = device return FaceRestoreHelper( upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=device, ) def restore_with_face_helper( np_image: np.ndarray, face_helper: FaceRestoreHelper, restore_face: Callable[[torch.Tensor], torch.Tensor], ) -> np.ndarray: """ Find faces in the image using face_helper, restore them using restore_face, and paste them back into the image. `restore_face` should take a cropped face image and return a restored face image. """ from torchvision.transforms.functional import normalize np_image = np_image[:, :, ::-1] original_resolution = np_image.shape[0:2] try: logger.debug("Detecting faces...") face_helper.clean_all() face_helper.read_image(np_image) face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) face_helper.align_warp_face() logger.debug("Found %d faces, restoring", len(face_helper.cropped_faces)) for cropped_face in face_helper.cropped_faces: cropped_face_t = bgr_image_to_rgb_tensor(cropped_face / 255.0) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) try: with torch.no_grad(): cropped_face_t = restore_face(cropped_face_t) devices.torch_gc() except Exception: errors.report('Failed face-restoration inference', exc_info=True) restored_face = rgb_tensor_to_bgr_image(cropped_face_t, min_max=(-1, 1)) restored_face = (restored_face * 255.0).astype('uint8') face_helper.add_restored_face(restored_face) logger.debug("Merging restored faces into image") face_helper.get_inverse_affine(None) img = face_helper.paste_faces_to_input_image() img = img[:, :, ::-1] if original_resolution != img.shape[0:2]: img = cv2.resize( img, (0, 0), fx=original_resolution[1] / img.shape[1], fy=original_resolution[0] / img.shape[0], interpolation=cv2.INTER_LINEAR, ) logger.debug("Face restoration complete") finally: face_helper.clean_all() return img class CommonFaceRestoration(face_restoration.FaceRestoration): net: torch.Module | None model_url: str model_download_name: str def __init__(self, model_path: str): super().__init__() self.net = None self.model_path = model_path os.makedirs(model_path, exist_ok=True) @cached_property def face_helper(self) -> FaceRestoreHelper: return create_face_helper(self.get_device()) def send_model_to(self, device): if self.net: logger.debug("Sending %s to %s", self.net, device) self.net.to(device) if self.face_helper: logger.debug("Sending face helper to %s", device) self.face_helper.face_det.to(device) self.face_helper.face_parse.to(device) def get_device(self): raise NotImplementedError("get_device must be implemented by subclasses") def load_net(self) -> torch.Module: raise NotImplementedError("load_net must be implemented by subclasses") def restore_with_helper( self, np_image: np.ndarray, restore_face: Callable[[torch.Tensor], torch.Tensor], ) -> np.ndarray: try: if self.net is None: self.net = self.load_net() except Exception: logger.warning("Unable to load face-restoration model", exc_info=True) return np_image try: prepare_free_memory() self.send_model_to(self.get_device()) return restore_with_face_helper(np_image, self.face_helper, restore_face) finally: if shared.opts.face_restoration_unload: self.send_model_to(devices.cpu) def patch_facexlib(dirname: str) -> None: import facexlib.detection import facexlib.parsing det_facex_load_file_from_url = facexlib.detection.load_file_from_url par_facex_load_file_from_url = facexlib.parsing.load_file_from_url def update_kwargs(kwargs): return dict(kwargs, save_dir=dirname, model_dir=None) def facex_load_file_from_url(**kwargs): return det_facex_load_file_from_url(**update_kwargs(kwargs)) def facex_load_file_from_url2(**kwargs): return par_facex_load_file_from_url(**update_kwargs(kwargs)) facexlib.detection.load_file_from_url = facex_load_file_from_url facexlib.parsing.load_file_from_url = facex_load_file_from_url2