import logging import sys import torch from PIL import Image from modules import devices, modelloader, script_callbacks, shared, upscaler_utils from modules.upscaler import Upscaler, UpscalerData from modules_forge.utils import prepare_free_memory SWINIR_MODEL_URL = "https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth" logger = logging.getLogger(__name__) class UpscalerSwinIR(Upscaler): def __init__(self, dirname): self._cached_model = None # keep the model when SWIN_torch_compile is on to prevent re-compile every runs self._cached_model_config = None # to clear '_cached_model' when changing model (v1/v2) or settings self.name = "SwinIR" self.model_url = SWINIR_MODEL_URL self.model_name = "SwinIR 4x" self.user_path = dirname super().__init__() scalers = [] model_files = self.find_models(ext_filter=[".pt", ".pth"]) for model in model_files: if model.startswith("http"): name = self.model_name else: name = modelloader.friendly_name(model) model_data = UpscalerData(name, model, self) scalers.append(model_data) self.scalers = scalers def do_upscale(self, img: Image.Image, model_file: str) -> Image.Image: prepare_free_memory() current_config = (model_file, shared.opts.SWIN_tile) if self._cached_model_config == current_config: model = self._cached_model else: try: model = self.load_model(model_file) except Exception as e: print(f"Failed loading SwinIR model {model_file}: {e}", file=sys.stderr) return img self._cached_model = model self._cached_model_config = current_config img = upscaler_utils.upscale_2( img, model, tile_size=shared.opts.SWIN_tile, tile_overlap=shared.opts.SWIN_tile_overlap, scale=model.scale, desc="SwinIR", ) devices.torch_gc() return img def load_model(self, path, scale=4): if path.startswith("http"): filename = modelloader.load_file_from_url( url=path, model_dir=self.model_download_path, file_name=f"{self.model_name.replace(' ', '_')}.pth", ) else: filename = path model_descriptor = modelloader.load_spandrel_model( filename, device=self._get_device(), prefer_half=(devices.dtype == torch.float16), expected_architecture="SwinIR", ) if getattr(shared.opts, 'SWIN_torch_compile', False): try: model_descriptor.model.compile() except Exception: logger.warning("Failed to compile SwinIR model, fallback to JIT", exc_info=True) return model_descriptor def _get_device(self): return devices.get_device_for('swinir') def on_ui_settings(): import gradio as gr shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling"))) shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling"))) shared.opts.add_option("SWIN_torch_compile", shared.OptionInfo(False, "Use torch.compile to accelerate SwinIR.", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")).info("Takes longer on first run")) script_callbacks.on_ui_settings(on_ui_settings)