# Started from some codes from early ComfyUI and then 80% rewritten, # mainly for supporting different special control methods in Forge # Copyright Forge 2024 import torch import math import collections from backend import memory_management from backend.sampling.condition import Condition, compile_conditions, compile_weighted_conditions from backend.operations import cleanup_cache from backend.args import dynamic_args, args from backend import utils def get_area_and_mult(conds, x_in, timestep_in): area = (x_in.shape[2], x_in.shape[3], 0, 0) strength = 1.0 if 'timestep_start' in conds: timestep_start = conds['timestep_start'] if timestep_in[0] > timestep_start: return None if 'timestep_end' in conds: timestep_end = conds['timestep_end'] if timestep_in[0] < timestep_end: return None if 'area' in conds: area = conds['area'] if 'strength' in conds: strength = conds['strength'] input_x = x_in[:, :, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] if 'mask' in conds: mask_strength = 1.0 if "mask_strength" in conds: mask_strength = conds["mask_strength"] mask = conds['mask'] assert (mask.shape[1] == x_in.shape[2]) assert (mask.shape[2] == x_in.shape[3]) mask = mask[:, area[2]:area[0] + area[2], area[3]:area[1] + area[3]] * mask_strength mask = mask.unsqueeze(1).repeat(input_x.shape[0] // mask.shape[0], input_x.shape[1], 1, 1) else: mask = torch.ones_like(input_x) mult = mask * strength if 'mask' not in conds: rr = 8 if area[2] != 0: for t in range(rr): mult[:, :, t:1 + t, :] *= ((1.0 / rr) * (t + 1)) if (area[0] + area[2]) < x_in.shape[2]: for t in range(rr): mult[:, :, area[0] - 1 - t:area[0] - t, :] *= ((1.0 / rr) * (t + 1)) if area[3] != 0: for t in range(rr): mult[:, :, :, t:1 + t] *= ((1.0 / rr) * (t + 1)) if (area[1] + area[3]) < x_in.shape[3]: for t in range(rr): mult[:, :, :, area[1] - 1 - t:area[1] - t] *= ((1.0 / rr) * (t + 1)) conditioning = {} model_conds = conds["model_conds"] for c in model_conds: conditioning[c] = model_conds[c].process_cond(batch_size=x_in.shape[0], device=x_in.device, area=area) control = conds.get('control', None) patches = None cond_obj = collections.namedtuple('cond_obj', ['input_x', 'mult', 'conditioning', 'area', 'control', 'patches']) return cond_obj(input_x, mult, conditioning, area, control, patches) def cond_equal_size(c1, c2): if c1 is c2: return True if c1.keys() != c2.keys(): return False for k in c1: if not c1[k].can_concat(c2[k]): return False return True def can_concat_cond(c1, c2): if c1.input_x.shape != c2.input_x.shape: return False def objects_concatable(obj1, obj2): if (obj1 is None) != (obj2 is None): return False if obj1 is not None: if obj1 is not obj2: return False return True if not objects_concatable(c1.control, c2.control): return False if not objects_concatable(c1.patches, c2.patches): return False return cond_equal_size(c1.conditioning, c2.conditioning) def cond_cat(c_list): c_crossattn = [] c_concat = [] c_adm = [] crossattn_max_len = 0 temp = {} for x in c_list: for k in x: cur = temp.get(k, []) cur.append(x[k]) temp[k] = cur out = {} for k in temp: conds = temp[k] out[k] = conds[0].concat(conds[1:]) return out def compute_cond_mark(cond_or_uncond, sigmas): cond_or_uncond_size = int(sigmas.shape[0]) cond_mark = [] for cx in cond_or_uncond: cond_mark += [cx] * cond_or_uncond_size cond_mark = torch.Tensor(cond_mark).to(sigmas) return cond_mark def compute_cond_indices(cond_or_uncond, sigmas): cl = int(sigmas.shape[0]) cond_indices = [] uncond_indices = [] for i, cx in enumerate(cond_or_uncond): if cx == 0: cond_indices += list(range(i * cl, (i + 1) * cl)) else: uncond_indices += list(range(i * cl, (i + 1) * cl)) return cond_indices, uncond_indices def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options): out_cond = torch.zeros_like(x_in) out_count = torch.ones_like(x_in) * 1e-37 out_uncond = torch.zeros_like(x_in) out_uncond_count = torch.ones_like(x_in) * 1e-37 COND = 0 UNCOND = 1 to_run = [] for x in cond: p = get_area_and_mult(x, x_in, timestep) if p is None: continue to_run += [(p, COND)] if uncond is not None: for x in uncond: p = get_area_and_mult(x, x_in, timestep) if p is None: continue to_run += [(p, UNCOND)] while len(to_run) > 0: first = to_run[0] first_shape = first[0][0].shape to_batch_temp = [] for x in range(len(to_run)): if can_concat_cond(to_run[x][0], first[0]): to_batch_temp += [x] to_batch_temp.reverse() to_batch = to_batch_temp[:1] free_memory = memory_management.get_free_memory(x_in.device) if (not args.disable_gpu_warning) and x_in.device.type == 'cuda': free_memory_mb = free_memory / (1024.0 * 1024.0) safe_memory_mb = 1536.0 if free_memory_mb < safe_memory_mb: print(f"\n\n----------------------") print(f"[Low GPU VRAM Warning] Your current GPU free memory is {free_memory_mb:.2f} MB for this diffusion iteration.") print(f"[Low GPU VRAM Warning] This number is lower than the safe value of {safe_memory_mb:.2f} MB.") print(f"[Low GPU VRAM Warning] If you continue the diffusion process, you may cause NVIDIA GPU degradation, and the speed may be extremely slow (about 10x slower).") print(f"[Low GPU VRAM Warning] To solve the problem, you can set the 'GPU Weights' (on the top of page) to a lower value.") print(f"[Low GPU VRAM Warning] If you cannot find 'GPU Weights', you can click the 'all' option in the 'UI' area on the left-top corner of the webpage.") print(f"[Low GPU VRAM Warning] If you want to take the risk of NVIDIA GPU fallback and test the 10x slower speed, you can (but are highly not recommended to) add '--disable-gpu-warning' to CMD flags to remove this warning.") print(f"----------------------\n\n") for i in range(1, len(to_batch_temp) + 1): batch_amount = to_batch_temp[:len(to_batch_temp) // i] input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:] if model.memory_required(input_shape) < free_memory: to_batch = batch_amount break input_x = [] mult = [] c = [] cond_or_uncond = [] area = [] control = None patches = None for x in to_batch: o = to_run.pop(x) p = o[0] input_x.append(p.input_x) mult.append(p.mult) c.append(p.conditioning) area.append(p.area) cond_or_uncond.append(o[1]) control = p.control patches = p.patches batch_chunks = len(cond_or_uncond) input_x = torch.cat(input_x) c = cond_cat(c) timestep_ = torch.cat([timestep] * batch_chunks) transformer_options = {} if 'transformer_options' in model_options: transformer_options = model_options['transformer_options'].copy() if patches is not None: if "patches" in transformer_options: cur_patches = transformer_options["patches"].copy() for p in patches: if p in cur_patches: cur_patches[p] = cur_patches[p] + patches[p] else: cur_patches[p] = patches[p] else: transformer_options["patches"] = patches transformer_options["cond_or_uncond"] = cond_or_uncond[:] transformer_options["sigmas"] = timestep transformer_options["cond_mark"] = compute_cond_mark(cond_or_uncond=cond_or_uncond, sigmas=timestep) transformer_options["cond_indices"], transformer_options["uncond_indices"] = compute_cond_indices(cond_or_uncond=cond_or_uncond, sigmas=timestep) c['transformer_options'] = transformer_options if control is not None: p = control while p is not None: p.transformer_options = transformer_options p = p.previous_controlnet control_cond = c.copy() # get_control may change items in this dict, so we need to copy it c['control'] = control.get_control(input_x, timestep_, control_cond, len(cond_or_uncond)) c['control_model'] = control if 'model_function_wrapper' in model_options: output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks) else: output = model.apply_model(input_x, timestep_, **c).chunk(batch_chunks) del input_x for o in range(batch_chunks): if cond_or_uncond[o] == COND: out_cond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] out_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o] else: out_uncond[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += output[o] * mult[o] out_uncond_count[:, :, area[o][2]:area[o][0] + area[o][2], area[o][3]:area[o][1] + area[o][3]] += mult[o] del mult out_cond /= out_count del out_count out_uncond /= out_uncond_count del out_uncond_count return out_cond, out_uncond def sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None, return_full=False): edit_strength = sum((item['strength'] if 'strength' in item else 1) for item in cond) if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False: uncond_ = None else: uncond_ = uncond for fn in model_options.get("sampler_pre_cfg_function", []): model, cond, uncond_, x, timestep, model_options = fn(model, cond, uncond_, x, timestep, model_options) cond_pred, uncond_pred = calc_cond_uncond_batch(model, cond, uncond_, x, timestep, model_options) if "sampler_cfg_function" in model_options: args = {"cond": x - cond_pred, "uncond": x - uncond_pred, "cond_scale": cond_scale, "timestep": timestep, "input": x, "sigma": timestep, "cond_denoised": cond_pred, "uncond_denoised": uncond_pred, "model": model, "model_options": model_options} cfg_result = x - model_options["sampler_cfg_function"](args) elif not math.isclose(edit_strength, 1.0): cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale * edit_strength else: cfg_result = uncond_pred + (cond_pred - uncond_pred) * cond_scale for fn in model_options.get("sampler_post_cfg_function", []): args = {"denoised": cfg_result, "cond": cond, "uncond": uncond, "model": model, "uncond_denoised": uncond_pred, "cond_denoised": cond_pred, "sigma": timestep, "model_options": model_options, "input": x} cfg_result = fn(args) if return_full: return cfg_result, cond_pred, uncond_pred return cfg_result def sampling_function(self, denoiser_params, cond_scale, cond_composition): unet_patcher = self.inner_model.inner_model.forge_objects.unet model = unet_patcher.model control = unet_patcher.controlnet_linked_list extra_concat_condition = unet_patcher.extra_concat_condition x = denoiser_params.x timestep = denoiser_params.sigma uncond = compile_conditions(denoiser_params.text_uncond) cond = compile_weighted_conditions(denoiser_params.text_cond, cond_composition) model_options = unet_patcher.model_options seed = self.p.seeds[0] if extra_concat_condition is not None: image_cond_in = extra_concat_condition else: image_cond_in = denoiser_params.image_cond if isinstance(image_cond_in, torch.Tensor): if image_cond_in.shape[0] == x.shape[0] \ and image_cond_in.shape[2] == x.shape[2] \ and image_cond_in.shape[3] == x.shape[3]: for i in range(len(uncond)): uncond[i]['model_conds']['c_concat'] = Condition(image_cond_in) for i in range(len(cond)): cond[i]['model_conds']['c_concat'] = Condition(image_cond_in) if control is not None: for h in cond + uncond: h['control'] = control for modifier in model_options.get('conditioning_modifiers', []): model, x, timestep, uncond, cond, cond_scale, model_options, seed = modifier(model, x, timestep, uncond, cond, cond_scale, model_options, seed) denoised, cond_pred, uncond_pred = sampling_function_inner(model, x, timestep, uncond, cond, cond_scale, model_options, seed, return_full=True) return denoised, cond_pred, uncond_pred def sampling_prepare(unet, x): B, C, H, W = x.shape memory_estimation_function = unet.model_options.get('memory_peak_estimation_modifier', unet.memory_required) unet_inference_memory = memory_estimation_function([B * 2, C, H, W]) additional_inference_memory = unet.extra_preserved_memory_during_sampling additional_model_patchers = unet.extra_model_patchers_during_sampling if unet.controlnet_linked_list is not None: additional_inference_memory += unet.controlnet_linked_list.inference_memory_requirements(unet.model_dtype()) additional_model_patchers += unet.controlnet_linked_list.get_models() if dynamic_args.get('online_lora', False): lora_memory = utils.nested_compute_size(unet.lora_loader.patches) additional_inference_memory += lora_memory memory_management.load_models_gpu( models=[unet] + additional_model_patchers, memory_required=unet_inference_memory + additional_inference_memory) if dynamic_args.get('online_lora', False): utils.nested_move_to_device(unet.lora_loader.patches, device=unet.current_device) unet.lora_loader.patches = {} real_model = unet.model percent_to_timestep_function = lambda p: real_model.predictor.percent_to_sigma(p) for cnet in unet.list_controlnets(): cnet.pre_run(real_model, percent_to_timestep_function) return def sampling_cleanup(unet): for cnet in unet.list_controlnets(): cnet.cleanup() cleanup_cache() return