import torch import numpy as np from PIL import Image def bislerp(samples, width, height): def slerp(b1, b2, r): '''slerps batches b1, b2 according to ratio r, batches should be flat e.g. NxC''' c = b1.shape[-1] # norms b1_norms = torch.norm(b1, dim=-1, keepdim=True) b2_norms = torch.norm(b2, dim=-1, keepdim=True) # normalize b1_normalized = b1 / b1_norms b2_normalized = b2 / b2_norms # zero when norms are zero b1_normalized[b1_norms.expand(-1, c) == 0.0] = 0.0 b2_normalized[b2_norms.expand(-1, c) == 0.0] = 0.0 # slerp dot = (b1_normalized * b2_normalized).sum(1) omega = torch.acos(dot) so = torch.sin(omega) # technically not mathematically correct, but more pleasing? res = (torch.sin((1.0 - r.squeeze(1)) * omega) / so).unsqueeze(1) * b1_normalized + (torch.sin(r.squeeze(1) * omega) / so).unsqueeze(1) * b2_normalized res *= (b1_norms * (1.0 - r) + b2_norms * r).expand(-1, c) # edge cases for same or polar opposites res[dot > 1 - 1e-5] = b1[dot > 1 - 1e-5] res[dot < 1e-5 - 1] = (b1 * (1.0 - r) + b2 * r)[dot < 1e-5 - 1] return res def generate_bilinear_data(length_old, length_new, device): coords_1 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1, 1, 1, -1)) coords_1 = torch.nn.functional.interpolate(coords_1, size=(1, length_new), mode="bilinear") ratios = coords_1 - coords_1.floor() coords_1 = coords_1.to(torch.int64) coords_2 = torch.arange(length_old, dtype=torch.float32, device=device).reshape((1, 1, 1, -1)) + 1 coords_2[:, :, :, -1] -= 1 coords_2 = torch.nn.functional.interpolate(coords_2, size=(1, length_new), mode="bilinear") coords_2 = coords_2.to(torch.int64) return ratios, coords_1, coords_2 orig_dtype = samples.dtype samples = samples.float() n, c, h, w = samples.shape h_new, w_new = (height, width) # linear w ratios, coords_1, coords_2 = generate_bilinear_data(w, w_new, samples.device) coords_1 = coords_1.expand((n, c, h, -1)) coords_2 = coords_2.expand((n, c, h, -1)) ratios = ratios.expand((n, 1, h, -1)) pass_1 = samples.gather(-1, coords_1).movedim(1, -1).reshape((-1, c)) pass_2 = samples.gather(-1, coords_2).movedim(1, -1).reshape((-1, c)) ratios = ratios.movedim(1, -1).reshape((-1, 1)) result = slerp(pass_1, pass_2, ratios) result = result.reshape(n, h, w_new, c).movedim(-1, 1) # linear h ratios, coords_1, coords_2 = generate_bilinear_data(h, h_new, samples.device) coords_1 = coords_1.reshape((1, 1, -1, 1)).expand((n, c, -1, w_new)) coords_2 = coords_2.reshape((1, 1, -1, 1)).expand((n, c, -1, w_new)) ratios = ratios.reshape((1, 1, -1, 1)).expand((n, 1, -1, w_new)) pass_1 = result.gather(-2, coords_1).movedim(1, -1).reshape((-1, c)) pass_2 = result.gather(-2, coords_2).movedim(1, -1).reshape((-1, c)) ratios = ratios.movedim(1, -1).reshape((-1, 1)) result = slerp(pass_1, pass_2, ratios) result = result.reshape(n, h_new, w_new, c).movedim(-1, 1) return result.to(orig_dtype) def lanczos(samples, width, height): images = [Image.fromarray(np.clip(255. * image.movedim(0, -1).cpu().numpy(), 0, 255).astype(np.uint8)) for image in samples] images = [image.resize((width, height), resample=Image.Resampling.LANCZOS) for image in images] images = [torch.from_numpy(np.array(image).astype(np.float32) / 255.0).movedim(-1, 0) for image in images] result = torch.stack(images) return result.to(samples.device, samples.dtype) def adaptive_resize(samples, width, height, upscale_method, crop): if crop == "center": old_width = samples.shape[3] old_height = samples.shape[2] old_aspect = old_width / old_height new_aspect = width / height x = 0 y = 0 if old_aspect > new_aspect: x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) elif old_aspect < new_aspect: y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) s = samples[:, :, y:old_height - y, x:old_width - x] else: s = samples if upscale_method == "bislerp": return bislerp(s, width, height) elif upscale_method == "lanczos": return lanczos(s, width, height) else: return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)