import torch from huggingface_guess import model_list from backend.diffusion_engine.base import ForgeDiffusionEngine, ForgeObjects from backend.patcher.clip import CLIP from backend.patcher.vae import VAE from backend.patcher.unet import UnetPatcher from backend.text_processing.classic_engine import ClassicTextProcessingEngine from backend.args import dynamic_args from backend import memory_management from backend.nn.unet import Timestep class StableDiffusionXL(ForgeDiffusionEngine): matched_guesses = [model_list.SDXL] def __init__(self, estimated_config, huggingface_components): super().__init__(estimated_config, huggingface_components) clip = CLIP( model_dict={ 'clip_l': huggingface_components['text_encoder'], 'clip_g': huggingface_components['text_encoder_2'] }, tokenizer_dict={ 'clip_l': huggingface_components['tokenizer'], 'clip_g': huggingface_components['tokenizer_2'] } ) vae = VAE(model=huggingface_components['vae']) unet = UnetPatcher.from_model( model=huggingface_components['unet'], diffusers_scheduler=huggingface_components['scheduler'], config=estimated_config ) self.text_processing_engine_l = ClassicTextProcessingEngine( text_encoder=clip.cond_stage_model.clip_l, tokenizer=clip.tokenizer.clip_l, embedding_dir=dynamic_args['embedding_dir'], embedding_key='clip_l', embedding_expected_shape=2048, emphasis_name=dynamic_args['emphasis_name'], text_projection=False, minimal_clip_skip=2, clip_skip=2, return_pooled=False, final_layer_norm=False, ) self.text_processing_engine_g = ClassicTextProcessingEngine( text_encoder=clip.cond_stage_model.clip_g, tokenizer=clip.tokenizer.clip_g, embedding_dir=dynamic_args['embedding_dir'], embedding_key='clip_g', embedding_expected_shape=2048, emphasis_name=dynamic_args['emphasis_name'], text_projection=True, minimal_clip_skip=2, clip_skip=2, return_pooled=True, final_layer_norm=False, ) self.embedder = Timestep(256) self.forge_objects = ForgeObjects(unet=unet, clip=clip, vae=vae, clipvision=None) self.forge_objects_original = self.forge_objects.shallow_copy() self.forge_objects_after_applying_lora = self.forge_objects.shallow_copy() # WebUI Legacy self.is_sdxl = True def set_clip_skip(self, clip_skip): self.text_processing_engine_l.clip_skip = clip_skip self.text_processing_engine_g.clip_skip = clip_skip @torch.inference_mode() def get_learned_conditioning(self, prompt: list[str]): memory_management.load_model_gpu(self.forge_objects.clip.patcher) cond_l = self.text_processing_engine_l(prompt) cond_g, clip_pooled = self.text_processing_engine_g(prompt) width = getattr(prompt, 'width', 1024) or 1024 height = getattr(prompt, 'height', 1024) or 1024 is_negative_prompt = getattr(prompt, 'is_negative_prompt', False) crop_w = 0 crop_h = 0 target_width = width target_height = height out = [ self.embedder(torch.Tensor([height])), self.embedder(torch.Tensor([width])), self.embedder(torch.Tensor([crop_h])), self.embedder(torch.Tensor([crop_w])), self.embedder(torch.Tensor([target_height])), self.embedder(torch.Tensor([target_width])) ] flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1).to(clip_pooled) force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in prompt) if force_zero_negative_prompt: clip_pooled = torch.zeros_like(clip_pooled) cond_l = torch.zeros_like(cond_l) cond_g = torch.zeros_like(cond_g) cond = dict( crossattn=torch.cat([cond_l, cond_g], dim=2), vector=torch.cat([clip_pooled, flat], dim=1), ) return cond @torch.inference_mode() def get_prompt_lengths_on_ui(self, prompt): _, token_count = self.text_processing_engine_l.process_texts([prompt]) return token_count, self.text_processing_engine_l.get_target_prompt_token_count(token_count) @torch.inference_mode() def encode_first_stage(self, x): sample = self.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5) sample = self.forge_objects.vae.first_stage_model.process_in(sample) return sample.to(x) @torch.inference_mode() def decode_first_stage(self, x): sample = self.forge_objects.vae.first_stage_model.process_out(x) sample = self.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0 return sample.to(x)