import os from contextlib import closing from pathlib import Path from PIL import Image, ImageOps, ImageFilter, ImageEnhance, UnidentifiedImageError import gradio as gr from modules import images from modules.infotext_utils import create_override_settings_dict, parse_generation_parameters from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.shared import opts, state from modules.sd_models import get_closet_checkpoint_match import modules.shared as shared import modules.processing as processing from modules.ui import plaintext_to_html import modules.scripts from modules_forge import main_thread def process_batch(p, input, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None): output_dir = output_dir.strip() processing.fix_seed(p) if isinstance(input, str): batch_images = list(shared.walk_files(input, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff"))) else: batch_images = [os.path.abspath(x.name) for x in input] is_inpaint_batch = False if inpaint_mask_dir: inpaint_masks = shared.listfiles(inpaint_mask_dir) is_inpaint_batch = bool(inpaint_masks) if is_inpaint_batch: print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.") print(f"Will process {len(batch_images)} images, creating {p.n_iter * p.batch_size} new images for each.") state.job_count = len(batch_images) * p.n_iter # extract "default" params to use in case getting png info fails prompt = p.prompt negative_prompt = p.negative_prompt seed = p.seed cfg_scale = p.cfg_scale sampler_name = p.sampler_name steps = p.steps override_settings = p.override_settings sd_model_checkpoint_override = get_closet_checkpoint_match(override_settings.get("sd_model_checkpoint", None)) batch_results = None discard_further_results = False for i, image in enumerate(batch_images): state.job = f"{i+1} out of {len(batch_images)}" if state.skipped: state.skipped = False if state.interrupted or state.stopping_generation: break try: img = images.read(image) except UnidentifiedImageError as e: print(e) continue # Use the EXIF orientation of photos taken by smartphones. img = ImageOps.exif_transpose(img) if to_scale: p.width = int(img.width * scale_by) p.height = int(img.height * scale_by) p.init_images = [img] * p.batch_size image_path = Path(image) if is_inpaint_batch: # try to find corresponding mask for an image using simple filename matching if len(inpaint_masks) == 1: mask_image_path = inpaint_masks[0] else: # try to find corresponding mask for an image using simple filename matching mask_image_dir = Path(inpaint_mask_dir) masks_found = list(mask_image_dir.glob(f"{image_path.stem}.*")) if len(masks_found) == 0: print(f"Warning: mask is not found for {image_path} in {mask_image_dir}. Skipping it.") continue # it should contain only 1 matching mask # otherwise user has many masks with the same name but different extensions mask_image_path = masks_found[0] mask_image = images.read(mask_image_path) p.image_mask = mask_image if use_png_info: try: info_img = img if png_info_dir: info_img_path = os.path.join(png_info_dir, os.path.basename(image)) info_img = images.read(info_img_path) geninfo, _ = images.read_info_from_image(info_img) parsed_parameters = parse_generation_parameters(geninfo) parsed_parameters = {k: v for k, v in parsed_parameters.items() if k in (png_info_props or {})} except Exception: parsed_parameters = {} p.prompt = prompt + (" " + parsed_parameters["Prompt"] if "Prompt" in parsed_parameters else "") p.negative_prompt = negative_prompt + (" " + parsed_parameters["Negative prompt"] if "Negative prompt" in parsed_parameters else "") p.seed = int(parsed_parameters.get("Seed", seed)) p.cfg_scale = float(parsed_parameters.get("CFG scale", cfg_scale)) p.sampler_name = parsed_parameters.get("Sampler", sampler_name) p.steps = int(parsed_parameters.get("Steps", steps)) model_info = get_closet_checkpoint_match(parsed_parameters.get("Model hash", None)) if model_info is not None: p.override_settings['sd_model_checkpoint'] = model_info.name elif sd_model_checkpoint_override: p.override_settings['sd_model_checkpoint'] = sd_model_checkpoint_override else: p.override_settings.pop("sd_model_checkpoint", None) if output_dir: p.outpath_samples = output_dir p.override_settings['save_to_dirs'] = False p.override_settings['save_images_replace_action'] = "Add number suffix" if p.n_iter > 1 or p.batch_size > 1: p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]' else: p.override_settings['samples_filename_pattern'] = f'{image_path.stem}' proc = modules.scripts.scripts_img2img.run(p, *args) if proc is None: p.override_settings.pop('save_images_replace_action', None) proc = process_images(p) if not discard_further_results and proc: if batch_results: batch_results.images.extend(proc.images) batch_results.infotexts.extend(proc.infotexts) else: batch_results = proc if 0 <= shared.opts.img2img_batch_show_results_limit < len(batch_results.images): discard_further_results = True batch_results.images = batch_results.images[:int(shared.opts.img2img_batch_show_results_limit)] batch_results.infotexts = batch_results.infotexts[:int(shared.opts.img2img_batch_show_results_limit)] return batch_results def img2img_function(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, sketch_fg, init_img_with_mask, init_img_with_mask_fg, inpaint_color_sketch, inpaint_color_sketch_fg, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, distilled_cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, img2img_batch_source_type: str, img2img_batch_upload: list, *args): override_settings = create_override_settings_dict(override_settings_texts) is_batch = mode == 5 height, width = int(height), int(width) image = None mask = None if mode == 0: # img2img image = init_img mask = None elif mode == 1: # img2img sketch mask = None image = Image.alpha_composite(sketch, sketch_fg) elif mode == 2: # inpaint image = init_img_with_mask mask = init_img_with_mask_fg.getchannel('A').convert('L') mask = Image.merge('RGBA', (mask, mask, mask, Image.new('L', mask.size, 255))) elif mode == 3: # inpaint sketch image = Image.alpha_composite(inpaint_color_sketch, inpaint_color_sketch_fg) mask = inpaint_color_sketch_fg.getchannel('A').convert('L') short_side = min(mask.size) dilation_size = int(0.015 * short_side) * 2 + 1 mask = mask.filter(ImageFilter.MaxFilter(dilation_size)) mask = Image.merge('RGBA', (mask, mask, mask, Image.new('L', mask.size, 255))) elif mode == 4: # inpaint upload mask image = init_img_inpaint mask = init_mask_inpaint if mask and isinstance(mask, Image.Image): mask = mask.point(lambda v: 255 if v > 128 else 0) image = images.fix_image(image) mask = images.fix_image(mask) if selected_scale_tab == 1 and not is_batch: assert image, "Can't scale by because no image is selected" width = int(image.width * scale_by) height = int(image.height * scale_by) assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' p = StableDiffusionProcessingImg2Img( outpath_samples=opts.outdir_samples or opts.outdir_img2img_samples, outpath_grids=opts.outdir_grids or opts.outdir_img2img_grids, prompt=prompt, negative_prompt=negative_prompt, styles=prompt_styles, batch_size=batch_size, n_iter=n_iter, cfg_scale=cfg_scale, width=width, height=height, init_images=[image], mask=mask, mask_blur=mask_blur, inpainting_fill=inpainting_fill, resize_mode=resize_mode, denoising_strength=denoising_strength, image_cfg_scale=image_cfg_scale, inpaint_full_res=inpaint_full_res, inpaint_full_res_padding=inpaint_full_res_padding, inpainting_mask_invert=inpainting_mask_invert, override_settings=override_settings, distilled_cfg_scale=distilled_cfg_scale ) p.scripts = modules.scripts.scripts_img2img p.script_args = args p.user = request.username if shared.opts.enable_console_prompts: print(f"\nimg2img: {prompt}", file=shared.progress_print_out) with closing(p): if is_batch: if img2img_batch_source_type == "upload": assert isinstance(img2img_batch_upload, list) and img2img_batch_upload output_dir = "" inpaint_mask_dir = "" png_info_dir = img2img_batch_png_info_dir if not shared.cmd_opts.hide_ui_dir_config else "" processed = process_batch(p, img2img_batch_upload, output_dir, inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=png_info_dir) else: # "from dir" assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" processed = process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args, to_scale=selected_scale_tab == 1, scale_by=scale_by, use_png_info=img2img_batch_use_png_info, png_info_props=img2img_batch_png_info_props, png_info_dir=img2img_batch_png_info_dir) if processed is None: processed = Processed(p, [], p.seed, "") else: processed = modules.scripts.scripts_img2img.run(p, *args) if processed is None: processed = process_images(p) shared.total_tqdm.clear() generation_info_js = processed.js() if opts.samples_log_stdout: print(generation_info_js) if opts.do_not_show_images: processed.images = [] return processed.images + processed.extra_images, generation_info_js, plaintext_to_html(processed.info), plaintext_to_html(processed.comments, classname="comments") def img2img(id_task: str, request: gr.Request, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, sketch_fg, init_img_with_mask, init_img_with_mask_fg, inpaint_color_sketch, inpaint_color_sketch_fg, init_img_inpaint, init_mask_inpaint, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, distilled_cfg_scale: float, image_cfg_scale: float, denoising_strength: float, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, img2img_batch_source_type: str, img2img_batch_upload: list, *args): return main_thread.run_and_wait_result(img2img_function, id_task, request, mode, prompt, negative_prompt, prompt_styles, init_img, sketch, sketch_fg, init_img_with_mask, init_img_with_mask_fg, inpaint_color_sketch, inpaint_color_sketch_fg, init_img_inpaint, init_mask_inpaint, mask_blur, mask_alpha, inpainting_fill, n_iter, batch_size, cfg_scale, distilled_cfg_scale, image_cfg_scale, denoising_strength, selected_scale_tab, height, width, scale_by, resize_mode, inpaint_full_res, inpaint_full_res_padding, inpainting_mask_invert, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, override_settings_texts, img2img_batch_use_png_info, img2img_batch_png_info_props, img2img_batch_png_info_dir, img2img_batch_source_type, img2img_batch_upload, *args)