Spaces:
Runtime error
Runtime error
import torch | |
import numpy as np | |
import os | |
import time | |
import random | |
import string | |
import cv2 | |
from backend import memory_management | |
def prepare_free_memory(aggressive=False): | |
if aggressive: | |
memory_management.unload_all_models() | |
print('Cleanup all memory.') | |
return | |
memory_management.free_memory(memory_required=memory_management.minimum_inference_memory(), | |
device=memory_management.get_torch_device()) | |
print('Cleanup minimal inference memory.') | |
return | |
def apply_circular_forge(model, tiling_enabled=False): | |
if model.tiling_enabled == tiling_enabled: | |
return | |
print(f'Tiling: {tiling_enabled}') | |
model.tiling_enabled = tiling_enabled | |
# def flatten(el): | |
# flattened = [flatten(children) for children in el.children()] | |
# res = [el] | |
# for c in flattened: | |
# res += c | |
# return res | |
# | |
# layers = flatten(model) | |
# | |
# for layer in [layer for layer in layers if 'Conv' in type(layer).__name__]: | |
# layer.padding_mode = 'circular' if tiling_enabled else 'zeros' | |
print(f'Tiling is currently under maintenance and unavailable. Sorry for the inconvenience.') | |
return | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def generate_random_filename(extension=".txt"): | |
timestamp = time.strftime("%Y%m%d-%H%M%S") | |
random_string = ''.join(random.choices(string.ascii_lowercase + string.digits, k=5)) | |
filename = f"{timestamp}-{random_string}{extension}" | |
return filename | |
def pytorch_to_numpy(x): | |
return [np.clip(255. * y.cpu().numpy(), 0, 255).astype(np.uint8) for y in x] | |
def numpy_to_pytorch(x): | |
y = x.astype(np.float32) / 255.0 | |
y = y[None] | |
y = np.ascontiguousarray(y.copy()) | |
y = torch.from_numpy(y).float() | |
return y | |
def write_images_to_mp4(frame_list: list, filename=None, fps=6): | |
from modules.paths_internal import default_output_dir | |
video_folder = os.path.join(default_output_dir, 'svd') | |
os.makedirs(video_folder, exist_ok=True) | |
if filename is None: | |
filename = generate_random_filename('.mp4') | |
full_path = os.path.join(video_folder, filename) | |
try: | |
import av | |
except ImportError: | |
from launch import run_pip | |
run_pip( | |
"install imageio[pyav]", | |
"imageio[pyav]", | |
) | |
import av | |
options = { | |
"crf": str(23) | |
} | |
output = av.open(full_path, "w") | |
stream = output.add_stream('libx264', fps, options=options) | |
stream.width = frame_list[0].shape[1] | |
stream.height = frame_list[0].shape[0] | |
for img in frame_list: | |
frame = av.VideoFrame.from_ndarray(img) | |
packet = stream.encode(frame) | |
output.mux(packet) | |
packet = stream.encode(None) | |
output.mux(packet) | |
output.close() | |
return full_path | |
def pad64(x): | |
return int(np.ceil(float(x) / 64.0) * 64 - x) | |
def safer_memory(x): | |
# Fix many MAC/AMD problems | |
return np.ascontiguousarray(x.copy()).copy() | |
def resize_image_with_pad(img, resolution): | |
H_raw, W_raw, _ = img.shape | |
k = float(resolution) / float(min(H_raw, W_raw)) | |
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA | |
H_target = int(np.round(float(H_raw) * k)) | |
W_target = int(np.round(float(W_raw) * k)) | |
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation) | |
H_pad, W_pad = pad64(H_target), pad64(W_target) | |
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge') | |
def remove_pad(x): | |
return safer_memory(x[:H_target, :W_target]) | |
return safer_memory(img_padded), remove_pad | |
def lazy_memory_management(model): | |
required_memory = memory_management.module_size(model) + memory_management.minimum_inference_memory() | |
memory_management.free_memory(required_memory, device=memory_management.get_torch_device()) | |
return | |