Spaces:
Runtime error
Runtime error
import sys | |
import PIL.Image | |
import modules.upscaler | |
from modules import devices, errors, modelloader, script_callbacks, shared, upscaler_utils | |
class UpscalerScuNET(modules.upscaler.Upscaler): | |
def __init__(self, dirname): | |
self.name = "ScuNET" | |
self.model_name = "ScuNET GAN" | |
self.model_name2 = "ScuNET PSNR" | |
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth" | |
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth" | |
self.user_path = dirname | |
super().__init__() | |
model_paths = self.find_models(ext_filter=[".pth"]) | |
scalers = [] | |
add_model2 = True | |
for file in model_paths: | |
if file.startswith("http"): | |
name = self.model_name | |
else: | |
name = modelloader.friendly_name(file) | |
if name == self.model_name2 or file == self.model_url2: | |
add_model2 = False | |
try: | |
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) | |
scalers.append(scaler_data) | |
except Exception: | |
errors.report(f"Error loading ScuNET model: {file}", exc_info=True) | |
if add_model2: | |
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) | |
scalers.append(scaler_data2) | |
self.scalers = scalers | |
def do_upscale(self, img: PIL.Image.Image, selected_file): | |
devices.torch_gc() | |
try: | |
model = self.load_model(selected_file) | |
except Exception as e: | |
print(f"ScuNET: Unable to load model from {selected_file}: {e}", file=sys.stderr) | |
return img | |
img = upscaler_utils.upscale_2( | |
img, | |
model, | |
tile_size=shared.opts.SCUNET_tile, | |
tile_overlap=shared.opts.SCUNET_tile_overlap, | |
scale=1, # ScuNET is a denoising model, not an upscaler | |
desc='ScuNET', | |
) | |
devices.torch_gc() | |
return img | |
def load_model(self, path: str): | |
device = devices.get_device_for('scunet') | |
if path.startswith("http"): | |
# TODO: this doesn't use `path` at all? | |
filename = modelloader.load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name=f"{self.name}.pth") | |
else: | |
filename = path | |
return modelloader.load_spandrel_model(filename, device=device, expected_architecture='SCUNet') | |
def on_ui_settings(): | |
import gradio as gr | |
shared.opts.add_option("SCUNET_tile", shared.OptionInfo(256, "Tile size for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")).info("0 = no tiling")) | |
shared.opts.add_option("SCUNET_tile_overlap", shared.OptionInfo(8, "Tile overlap for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=('upscaling', "Upscaling")).info("Low values = visible seam")) | |
script_callbacks.on_ui_settings(on_ui_settings) | |