File size: 9,648 Bytes
6831a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
# Model Patching System, Copyright Forge 2024

# API Templates partially extracted From ComfyUI, the actual implementation for those APIs
# are from Forge, implemented from scratch (after forge-v1.0.1), and may have
# certain level of differences.


import copy
import inspect

from backend import memory_management, utils
from backend.patcher.lora import LoraLoader


def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
    to = model_options["transformer_options"].copy()

    if "patches_replace" not in to:
        to["patches_replace"] = {}
    else:
        to["patches_replace"] = to["patches_replace"].copy()

    if name not in to["patches_replace"]:
        to["patches_replace"][name] = {}
    else:
        to["patches_replace"][name] = to["patches_replace"][name].copy()

    if transformer_index is not None:
        block = (block_name, number, transformer_index)
    else:
        block = (block_name, number)
    to["patches_replace"][name][block] = patch
    model_options["transformer_options"] = to
    return model_options


def set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=False):
    model_options["sampler_post_cfg_function"] = model_options.get("sampler_post_cfg_function", []) + [post_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options


def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_cfg1_optimization=False):
    model_options["sampler_pre_cfg_function"] = model_options.get("sampler_pre_cfg_function", []) + [pre_cfg_function]
    if disable_cfg1_optimization:
        model_options["disable_cfg1_optimization"] = True
    return model_options


class ModelPatcher:
    def __init__(self, model, load_device, offload_device, size=0, current_device=None, **kwargs):
        self.size = size
        self.model = model
        self.object_patches = {}
        self.object_patches_backup = {}
        self.model_options = {"transformer_options": {}}
        self.model_size()
        self.load_device = load_device
        self.offload_device = offload_device

        if not hasattr(model, 'lora_loader'):
            model.lora_loader = LoraLoader(model)

        self.lora_loader: LoraLoader = model.lora_loader

        if current_device is None:
            self.current_device = self.offload_device
        else:
            self.current_device = current_device

    def model_size(self):
        if self.size > 0:
            return self.size
        self.size = memory_management.module_size(self.model)
        return self.size

    def clone(self):
        n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, self.current_device)
        n.object_patches = self.object_patches.copy()
        n.model_options = copy.deepcopy(self.model_options)
        return n

    def is_clone(self, other):
        if hasattr(other, 'model') and self.model is other.model:
            return True
        return False

    def memory_required(self, input_shape):
        return self.model.memory_required(input_shape=input_shape)

    def set_model_sampler_cfg_function(self, sampler_cfg_function, disable_cfg1_optimization=False):
        if len(inspect.signature(sampler_cfg_function).parameters) == 3:
            self.model_options["sampler_cfg_function"] = lambda args: sampler_cfg_function(args["cond"], args["uncond"], args["cond_scale"])  # Old way
        else:
            self.model_options["sampler_cfg_function"] = sampler_cfg_function
        if disable_cfg1_optimization:
            self.model_options["disable_cfg1_optimization"] = True

    def set_model_sampler_post_cfg_function(self, post_cfg_function, disable_cfg1_optimization=False):
        self.model_options = set_model_options_post_cfg_function(self.model_options, post_cfg_function, disable_cfg1_optimization)

    def set_model_sampler_pre_cfg_function(self, pre_cfg_function, disable_cfg1_optimization=False):
        self.model_options = set_model_options_pre_cfg_function(self.model_options, pre_cfg_function, disable_cfg1_optimization)

    def set_model_unet_function_wrapper(self, unet_wrapper_function):
        self.model_options["model_function_wrapper"] = unet_wrapper_function

    def set_model_vae_encode_wrapper(self, wrapper_function):
        self.model_options["model_vae_encode_wrapper"] = wrapper_function

    def set_model_vae_decode_wrapper(self, wrapper_function):
        self.model_options["model_vae_decode_wrapper"] = wrapper_function

    def set_model_vae_regulation(self, vae_regulation):
        self.model_options["model_vae_regulation"] = vae_regulation

    def set_model_denoise_mask_function(self, denoise_mask_function):
        self.model_options["denoise_mask_function"] = denoise_mask_function

    def set_model_patch(self, patch, name):
        to = self.model_options["transformer_options"]
        if "patches" not in to:
            to["patches"] = {}
        to["patches"][name] = to["patches"].get(name, []) + [patch]

    def set_model_patch_replace(self, patch, name, block_name, number, transformer_index=None):
        self.model_options = set_model_options_patch_replace(self.model_options, patch, name, block_name, number, transformer_index=transformer_index)

    def set_model_attn1_patch(self, patch):
        self.set_model_patch(patch, "attn1_patch")

    def set_model_attn2_patch(self, patch):
        self.set_model_patch(patch, "attn2_patch")

    def set_model_attn1_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn1", block_name, number, transformer_index)

    def set_model_attn2_replace(self, patch, block_name, number, transformer_index=None):
        self.set_model_patch_replace(patch, "attn2", block_name, number, transformer_index)

    def set_model_attn1_output_patch(self, patch):
        self.set_model_patch(patch, "attn1_output_patch")

    def set_model_attn2_output_patch(self, patch):
        self.set_model_patch(patch, "attn2_output_patch")

    def set_model_input_block_patch(self, patch):
        self.set_model_patch(patch, "input_block_patch")

    def set_model_input_block_patch_after_skip(self, patch):
        self.set_model_patch(patch, "input_block_patch_after_skip")

    def set_model_output_block_patch(self, patch):
        self.set_model_patch(patch, "output_block_patch")

    def add_object_patch(self, name, obj):
        self.object_patches[name] = obj

    def get_model_object(self, name):
        if name in self.object_patches:
            return self.object_patches[name]
        else:
            if name in self.object_patches_backup:
                return self.object_patches_backup[name]
            else:
                return utils.get_attr(self.model, name)

    def model_patches_to(self, device):
        to = self.model_options["transformer_options"]
        if "patches" in to:
            patches = to["patches"]
            for name in patches:
                patch_list = patches[name]
                for i in range(len(patch_list)):
                    if hasattr(patch_list[i], "to"):
                        patch_list[i] = patch_list[i].to(device)
        if "patches_replace" in to:
            patches = to["patches_replace"]
            for name in patches:
                patch_list = patches[name]
                for k in patch_list:
                    if hasattr(patch_list[k], "to"):
                        patch_list[k] = patch_list[k].to(device)
        if "model_function_wrapper" in self.model_options:
            wrap_func = self.model_options["model_function_wrapper"]
            if hasattr(wrap_func, "to"):
                self.model_options["model_function_wrapper"] = wrap_func.to(device)

    def model_dtype(self):
        if hasattr(self.model, "get_dtype"):
            return self.model.get_dtype()

    def get_key_patches(self, filter_prefix=None):
        memory_management.unload_model_clones(self)
        model_sd = self.model_state_dict()
        p = {}
        for k in model_sd:
            if filter_prefix is not None:
                if not k.startswith(filter_prefix):
                    continue
            if k in self.patches:
                p[k] = [model_sd[k]] + self.patches[k]
            else:
                p[k] = (model_sd[k],)
        return p

    def model_state_dict(self, filter_prefix=None):
        sd = self.model.state_dict()
        keys = list(sd.keys())
        if filter_prefix is not None:
            for k in keys:
                if not k.startswith(filter_prefix):
                    sd.pop(k)
        return sd

    def forge_patch_model(self, target_device=None):
        for k, item in self.object_patches.items():
            old = utils.get_attr(self.model, k)

            if k not in self.object_patches_backup:
                self.object_patches_backup[k] = old

            utils.set_attr_raw(self.model, k, item)

        self.lora_loader.refresh(target_device=target_device, offload_device=self.offload_device)

        if target_device is not None:
            self.model.to(target_device)

        return self.model

    def forge_unpatch_model(self, target_device=None):
        if target_device is not None:
            self.model.to(target_device)
            self.current_device = target_device

        keys = list(self.object_patches_backup.keys())

        for k in keys:
            utils.set_attr_raw(self.model, k, self.object_patches_backup[k])

        self.object_patches_backup = {}
        return