mohcineelharras
commited on
Commit
·
e6e7a99
1
Parent(s):
17f1353
init
Browse files- .env +6 -0
- .gitattributes +2 -0
- .gitignore +2 -0
- README.md +2 -2
- app.py +228 -0
- data/bitcoin.pdf +0 -0
- data/doctest.txt +3 -0
- models/dolphin-2.1-mistral-7b.Q4_K_S.gguf +3 -0
- models/hkunlp_instructor-base/.gitattributes +34 -0
- models/hkunlp_instructor-base/1_Pooling/config.json +9 -0
- models/hkunlp_instructor-base/2_Dense/config.json +1 -0
- models/hkunlp_instructor-base/2_Dense/pytorch_model.bin +3 -0
- models/hkunlp_instructor-base/README.md +2610 -0
- models/hkunlp_instructor-base/config.json +60 -0
- models/hkunlp_instructor-base/config_sentence_transformers.json +7 -0
- models/hkunlp_instructor-base/modules.json +26 -0
- models/hkunlp_instructor-base/pytorch_model.bin +3 -0
- models/hkunlp_instructor-base/sentence_bert_config.json +4 -0
- models/hkunlp_instructor-base/special_tokens_map.json +107 -0
- models/hkunlp_instructor-base/spiece.model +3 -0
- models/hkunlp_instructor-base/tokenizer.json +0 -0
- models/hkunlp_instructor-base/tokenizer_config.json +112 -0
- requirements.txt +18 -0
- ressources/LLM_ONLY.png +0 -0
- ressources/LLM_RAG_DATABASE.png +0 -0
- ressources/Upload_File_QA.png +0 -0
.env
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CUDA_VISIBLE_DEVICES=0
|
2 |
+
FORCE_CMAKE=1
|
3 |
+
CMAKE_ARGS="-DLLAMA_CUBLAS=on"
|
4 |
+
no_proxy=localhost,127.0.0.1
|
5 |
+
OPENAI_API_KEY=NOONEEED
|
6 |
+
OPENAI_API_BASE=http://localhost:1300/v1
|
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/hkunlp_instructor-base/*gguf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
models/*gguf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
/draft_docs
|
2 |
+
short_memory.txt
|
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
title: Llama Index Docs Spaces
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: indigo
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.28.2
|
|
|
1 |
---
|
2 |
title: Llama Index Docs Spaces
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: purple
|
5 |
colorTo: indigo
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.28.2
|
app.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------libraries-----------------------------------
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
#import torch
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
+
import sys
|
8 |
+
from llama_index.callbacks import CallbackManager, LlamaDebugHandler
|
9 |
+
from llama_index.llms import LlamaCPP
|
10 |
+
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt
|
11 |
+
from llama_index.embeddings import InstructorEmbedding
|
12 |
+
from llama_index import ServiceContext, VectorStoreIndex, SimpleDirectoryReader
|
13 |
+
from tqdm.notebook import tqdm
|
14 |
+
from dotenv import load_dotenv
|
15 |
+
|
16 |
+
# --------------------------------env variables-----------------------------------
|
17 |
+
|
18 |
+
# Load environment variables
|
19 |
+
load_dotenv(dotenv_path=".env")
|
20 |
+
|
21 |
+
no_proxy = os.getenv("no_proxy")
|
22 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
23 |
+
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE")
|
24 |
+
|
25 |
+
# --------------------------------cache LLM-----------------------------------
|
26 |
+
|
27 |
+
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
|
28 |
+
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
|
29 |
+
llama_debug = LlamaDebugHandler(print_trace_on_end=True)
|
30 |
+
callback_manager = CallbackManager([llama_debug])
|
31 |
+
# LLM
|
32 |
+
@st.cache_resource
|
33 |
+
def load_llm_model():
|
34 |
+
if not os.path.exists("models"):
|
35 |
+
st.error("models directory does not exist. Please download and copy paste a model in folder models.")
|
36 |
+
os.makedirs("models")
|
37 |
+
return None #
|
38 |
+
llm = LlamaCPP(
|
39 |
+
#model_url="https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF/resolve/main/llama-2-13b-chat.Q5_K_M.gguf",
|
40 |
+
model_path="models/dolphin-2.1-mistral-7b.Q4_K_S.gguf",
|
41 |
+
temperature=0.0,
|
42 |
+
max_new_tokens=100,
|
43 |
+
context_window=1024,
|
44 |
+
generate_kwargs={},
|
45 |
+
model_kwargs={"n_gpu_layers": 20},
|
46 |
+
messages_to_prompt=messages_to_prompt,
|
47 |
+
completion_to_prompt=completion_to_prompt,
|
48 |
+
verbose=True,
|
49 |
+
)
|
50 |
+
return llm
|
51 |
+
|
52 |
+
llm = load_llm_model()
|
53 |
+
|
54 |
+
# --------------------------------cache Embedding model-----------------------------------
|
55 |
+
|
56 |
+
@st.cache_resource
|
57 |
+
def load_emb_model():
|
58 |
+
if not os.path.exists("data"):
|
59 |
+
st.error("Data directory does not exist. Please upload the data.")
|
60 |
+
os.makedirs("data")
|
61 |
+
return None #
|
62 |
+
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base"
|
63 |
+
#model_name="hkunlp/instructor-base"
|
64 |
+
)
|
65 |
+
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm)
|
66 |
+
documents = SimpleDirectoryReader("data").load_data()
|
67 |
+
print(f"Number of documents: {len(documents)}")
|
68 |
+
index = VectorStoreIndex.from_documents(
|
69 |
+
documents, service_context=service_context, show_progress=True)
|
70 |
+
return index.as_query_engine()
|
71 |
+
|
72 |
+
query_engine = load_emb_model()
|
73 |
+
|
74 |
+
# ------------------------------------layout----------------------------------------
|
75 |
+
|
76 |
+
with st.sidebar:
|
77 |
+
api_server_info = st.text_input("Local LLM API server", OPENAI_API_BASE ,key="openai_api_base")
|
78 |
+
st.title("🤖 Llama Index 📚")
|
79 |
+
if st.button('Clear Memory'):
|
80 |
+
st.session_state.memory = ""
|
81 |
+
st.write("Local LLM API server in this demo is useles, we are loading local model using llama_index integration of llama cpp")
|
82 |
+
st.write("🚀 This app allows you to chat with local LLM using api server or loaded in cache")
|
83 |
+
st.subheader("💻 System Requirements: ")
|
84 |
+
st.markdown("- CPU: the faster the better ")
|
85 |
+
st.markdown("- RAM: 16 GB or higher")
|
86 |
+
st.markdown("- GPU: optional but very useful for Cuda acceleration")
|
87 |
+
st.subheader("Developer Information:")
|
88 |
+
st.write("This app is developed and maintained by **@mohcineelharras**")
|
89 |
+
|
90 |
+
# Define your app's tabs
|
91 |
+
tab1, tab2, tab3 = st.tabs(["LLM only", "LLM RAG QA with database", "One single document Q&A"])
|
92 |
+
|
93 |
+
# -----------------------------------LLM only---------------------------------------------
|
94 |
+
if 'memory' not in st.session_state:
|
95 |
+
st.session_state.memory = ""
|
96 |
+
#token_count = 0
|
97 |
+
with tab1:
|
98 |
+
st.title("💬 LLM only")
|
99 |
+
prompt = st.text_input(
|
100 |
+
"Ask your question here",
|
101 |
+
placeholder="Who is Lionel Messi",
|
102 |
+
)
|
103 |
+
template = (
|
104 |
+
"system\n"
|
105 |
+
"You are Dolphin, a helpful AI assistant. Your responses should be based solely on the content of documents you have access to. "
|
106 |
+
"Do not provide information that is not contained in the documents. "
|
107 |
+
"If a question is asked about content not in the documents, respond with 'I do not have that information.' "
|
108 |
+
"Always respond in the same language as the question was asked. Be concise.\n"
|
109 |
+
"user\n"
|
110 |
+
"{prompt}\n"
|
111 |
+
"assistant\n"
|
112 |
+
)
|
113 |
+
if prompt:
|
114 |
+
contextual_prompt = st.session_state.memory + "\n" + prompt
|
115 |
+
formatted_prompt = template.format(prompt=contextual_prompt)
|
116 |
+
|
117 |
+
response = llm.complete(formatted_prompt,max_tokens=100, temperature=0, top_p=0.95, top_k=10)
|
118 |
+
#print(response)
|
119 |
+
text_response = response
|
120 |
+
#---------------------------------------------
|
121 |
+
# text_response = response["choices"][0]["text"]
|
122 |
+
# token_count += response["usage"]["total_tokens"]
|
123 |
+
# st.write("LLM's Response:\n", text_response)
|
124 |
+
# st.write("Token count:\n", token_count)
|
125 |
+
#---------------------------------------------
|
126 |
+
st.write("LLM's Response:\n",text_response)
|
127 |
+
st.session_state.memory = f"Prompt: {contextual_prompt}\nResponse:\n {text_response}"
|
128 |
+
#st.write("Memory:\n", memory)
|
129 |
+
with open("short_memory.txt", 'w') as file:
|
130 |
+
file.write(st.session_state.memory)
|
131 |
+
|
132 |
+
# -----------------------------------LLM Q&A-------------------------------------------------
|
133 |
+
|
134 |
+
with tab2:
|
135 |
+
st.title("💬 LLM RAG QA with database")
|
136 |
+
st.write("To consult files that are available in the database, go to https://huggingface.co/spaces/mohcineelharras/llama-index-docs-spaces/blob/main/data")
|
137 |
+
prompt = st.text_input(
|
138 |
+
"Ask your question here",
|
139 |
+
placeholder="How does the blockchain work ?",
|
140 |
+
)
|
141 |
+
if prompt:
|
142 |
+
response = query_engine.query(prompt)
|
143 |
+
st.write("Your prompt: ", prompt)
|
144 |
+
st.write("LLM's Response:\n"+ response.response)
|
145 |
+
with st.expander("Document Similarity Search"):
|
146 |
+
for i, node in enumerate(response.source_nodes):
|
147 |
+
dict_source_i = node.node.metadata
|
148 |
+
dict_source_i.update({"Text":node.node.text})
|
149 |
+
st.write("Source n°"+str(i+1), dict_source_i)
|
150 |
+
st.write()
|
151 |
+
|
152 |
+
# -----------------------------------Upload File Q&A-----------------------------------------
|
153 |
+
|
154 |
+
def load_emb_uploaded_document(filename):
|
155 |
+
# You may want to add a check to prevent execution during initialization.
|
156 |
+
if 'init' in st.session_state:
|
157 |
+
embed_model_inst = InstructorEmbedding("models/hkunlp_instructor-base")
|
158 |
+
service_context = ServiceContext.from_defaults(embed_model=embed_model_inst, llm=llm)
|
159 |
+
documents = SimpleDirectoryReader(input_files=[filename]).load_data()
|
160 |
+
index = VectorStoreIndex.from_documents(
|
161 |
+
documents, service_context=service_context, show_progress=True)
|
162 |
+
return index.as_query_engine()
|
163 |
+
return None
|
164 |
+
|
165 |
+
with tab3:
|
166 |
+
st.title("📝 One single document Q&A with Llama Index using local open llms")
|
167 |
+
uploaded_file = st.file_uploader("Upload an File", type=("txt", "csv", "md","pdf"))
|
168 |
+
question = st.text_input(
|
169 |
+
"Ask something about the files",
|
170 |
+
placeholder="Can you give me a short summary?",
|
171 |
+
disabled=not uploaded_file,
|
172 |
+
)
|
173 |
+
|
174 |
+
if 'init' not in st.session_state:
|
175 |
+
st.session_state.init = True
|
176 |
+
|
177 |
+
if uploaded_file:
|
178 |
+
if not os.path.exists("draft_docs"):
|
179 |
+
st.error("draft_docs directory does not exist. Please download and copy paste a model in folder models.")
|
180 |
+
os.makedirs("draft_docs")
|
181 |
+
|
182 |
+
with open("draft_docs/"+uploaded_file.name, "wb") as f:
|
183 |
+
text = uploaded_file.read()
|
184 |
+
f.write(text)
|
185 |
+
text = uploaded_file.read()
|
186 |
+
# if load_emb_uploaded_document:
|
187 |
+
# load_emb_uploaded_document.clear()
|
188 |
+
#load_emb_uploaded_document.clear()
|
189 |
+
query_engine = load_emb_uploaded_document("draft_docs/"+uploaded_file.name)
|
190 |
+
st.write("File ",uploaded_file.name, "was loaded successfully")
|
191 |
+
|
192 |
+
if uploaded_file and question and api_server_info:
|
193 |
+
response = prompt = f"""Based on the context presented. Respond to the question below to the best of your ability.
|
194 |
+
\n\n{question}"""
|
195 |
+
response = query_engine.query(prompt)
|
196 |
+
st.write("### Answer")
|
197 |
+
st.write(response.response)
|
198 |
+
with st.expander("Document Similarity Search"):
|
199 |
+
#st.write(len(response.source_nodes))
|
200 |
+
for i, node in enumerate(response.source_nodes):
|
201 |
+
dict_source_i = node.node.metadata
|
202 |
+
dict_source_i.update({"Text":node.node.text})
|
203 |
+
st.write("Source n°"+str(i+1), dict_source_i)
|
204 |
+
#st.write("Source n°"+str(i))
|
205 |
+
#st.write("Meta Data :", node.node.metadata)
|
206 |
+
#st.write("Text :", node.node.text)
|
207 |
+
#st.write()
|
208 |
+
#print("Is File uploaded : ",uploaded_file==True, "Is question asked : ", question==True, "Is question asked : ", api_server_info==True)
|
209 |
+
|
210 |
+
st.markdown("""
|
211 |
+
<div style="text-align: center; margin-top: 20px;">
|
212 |
+
<a href="https://github.com/mohcineelharras/llama-index-docs" target="_blank" style="margin: 10px; display: inline-block;">
|
213 |
+
<img src="https://img.shields.io/badge/Repository-333?logo=github&style=for-the-badge" alt="Repository" style="vertical-align: middle;">
|
214 |
+
</a>
|
215 |
+
<a href="https://www.linkedin.com/in/mohcine-el-harras" target="_blank" style="margin: 10px; display: inline-block;">
|
216 |
+
<img src="https://img.shields.io/badge/-LinkedIn-0077B5?style=for-the-badge&logo=linkedin" alt="LinkedIn" style="vertical-align: middle;">
|
217 |
+
</a>
|
218 |
+
<a href="https://mohcineelharras.github.io" target="_blank" style="margin: 10px; display: inline-block;">
|
219 |
+
<img src="https://img.shields.io/badge/Visit-Portfolio-9cf?style=for-the-badge" alt="GitHub" style="vertical-align: middle;">
|
220 |
+
</a>
|
221 |
+
</div>
|
222 |
+
<div style="text-align: center; margin-top: 20px; color: #666; font-size: 0.85em;">
|
223 |
+
© 2023 Mohcine EL HARRAS
|
224 |
+
</div>
|
225 |
+
""", unsafe_allow_html=True)
|
226 |
+
|
227 |
+
|
228 |
+
# -----------------------------------end-----------------------------------------
|
data/bitcoin.pdf
ADDED
Binary file (184 kB). View file
|
|
data/doctest.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Hi my name is Mohcine,
|
2 |
+
I am 25 years old
|
3 |
+
I am a freelancer
|
models/dolphin-2.1-mistral-7b.Q4_K_S.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fa0795eeac9ac8835a7f85ed398cf1a0881d3c9f40ee4bab51a5fd8838f68f9
|
3 |
+
size 4140384992
|
models/hkunlp_instructor-base/.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
models/hkunlp_instructor-base/1_Pooling/config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false
|
9 |
+
}
|
models/hkunlp_instructor-base/2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": false, "activation_function": "torch.nn.modules.linear.Identity"}
|
models/hkunlp_instructor-base/2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4e9301dfb3d947e4e2bcc6c8c9c8da58d1c07c11db7eb5e9e1a14749883f719
|
3 |
+
size 2360171
|
models/hkunlp_instructor-base/README.md
ADDED
@@ -0,0 +1,2610 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- text-embedding
|
5 |
+
- embeddings
|
6 |
+
- information-retrieval
|
7 |
+
- beir
|
8 |
+
- text-classification
|
9 |
+
- language-model
|
10 |
+
- text-clustering
|
11 |
+
- text-semantic-similarity
|
12 |
+
- text-evaluation
|
13 |
+
- prompt-retrieval
|
14 |
+
- text-reranking
|
15 |
+
- sentence-transformers
|
16 |
+
- feature-extraction
|
17 |
+
- sentence-similarity
|
18 |
+
- transformers
|
19 |
+
- t5
|
20 |
+
- English
|
21 |
+
- Sentence Similarity
|
22 |
+
- natural_questions
|
23 |
+
- ms_marco
|
24 |
+
- fever
|
25 |
+
- hotpot_qa
|
26 |
+
- mteb
|
27 |
+
language: en
|
28 |
+
inference: false
|
29 |
+
license: apache-2.0
|
30 |
+
model-index:
|
31 |
+
- name: final_base_results
|
32 |
+
results:
|
33 |
+
- task:
|
34 |
+
type: Classification
|
35 |
+
dataset:
|
36 |
+
type: mteb/amazon_counterfactual
|
37 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
38 |
+
config: en
|
39 |
+
split: test
|
40 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
41 |
+
metrics:
|
42 |
+
- type: accuracy
|
43 |
+
value: 86.2089552238806
|
44 |
+
- type: ap
|
45 |
+
value: 55.76273850794966
|
46 |
+
- type: f1
|
47 |
+
value: 81.26104211414781
|
48 |
+
- task:
|
49 |
+
type: Classification
|
50 |
+
dataset:
|
51 |
+
type: mteb/amazon_polarity
|
52 |
+
name: MTEB AmazonPolarityClassification
|
53 |
+
config: default
|
54 |
+
split: test
|
55 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
56 |
+
metrics:
|
57 |
+
- type: accuracy
|
58 |
+
value: 88.35995000000001
|
59 |
+
- type: ap
|
60 |
+
value: 84.18839957309655
|
61 |
+
- type: f1
|
62 |
+
value: 88.317619250081
|
63 |
+
- task:
|
64 |
+
type: Classification
|
65 |
+
dataset:
|
66 |
+
type: mteb/amazon_reviews_multi
|
67 |
+
name: MTEB AmazonReviewsClassification (en)
|
68 |
+
config: en
|
69 |
+
split: test
|
70 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
71 |
+
metrics:
|
72 |
+
- type: accuracy
|
73 |
+
value: 44.64
|
74 |
+
- type: f1
|
75 |
+
value: 42.48663956478136
|
76 |
+
- task:
|
77 |
+
type: Retrieval
|
78 |
+
dataset:
|
79 |
+
type: arguana
|
80 |
+
name: MTEB ArguAna
|
81 |
+
config: default
|
82 |
+
split: test
|
83 |
+
revision: None
|
84 |
+
metrics:
|
85 |
+
- type: map_at_1
|
86 |
+
value: 27.383000000000003
|
87 |
+
- type: map_at_10
|
88 |
+
value: 43.024
|
89 |
+
- type: map_at_100
|
90 |
+
value: 44.023
|
91 |
+
- type: map_at_1000
|
92 |
+
value: 44.025999999999996
|
93 |
+
- type: map_at_3
|
94 |
+
value: 37.684
|
95 |
+
- type: map_at_5
|
96 |
+
value: 40.884
|
97 |
+
- type: mrr_at_1
|
98 |
+
value: 28.094
|
99 |
+
- type: mrr_at_10
|
100 |
+
value: 43.315
|
101 |
+
- type: mrr_at_100
|
102 |
+
value: 44.313
|
103 |
+
- type: mrr_at_1000
|
104 |
+
value: 44.317
|
105 |
+
- type: mrr_at_3
|
106 |
+
value: 37.862
|
107 |
+
- type: mrr_at_5
|
108 |
+
value: 41.155
|
109 |
+
- type: ndcg_at_1
|
110 |
+
value: 27.383000000000003
|
111 |
+
- type: ndcg_at_10
|
112 |
+
value: 52.032000000000004
|
113 |
+
- type: ndcg_at_100
|
114 |
+
value: 56.19499999999999
|
115 |
+
- type: ndcg_at_1000
|
116 |
+
value: 56.272
|
117 |
+
- type: ndcg_at_3
|
118 |
+
value: 41.166000000000004
|
119 |
+
- type: ndcg_at_5
|
120 |
+
value: 46.92
|
121 |
+
- type: precision_at_1
|
122 |
+
value: 27.383000000000003
|
123 |
+
- type: precision_at_10
|
124 |
+
value: 8.087
|
125 |
+
- type: precision_at_100
|
126 |
+
value: 0.989
|
127 |
+
- type: precision_at_1000
|
128 |
+
value: 0.099
|
129 |
+
- type: precision_at_3
|
130 |
+
value: 17.093
|
131 |
+
- type: precision_at_5
|
132 |
+
value: 13.044
|
133 |
+
- type: recall_at_1
|
134 |
+
value: 27.383000000000003
|
135 |
+
- type: recall_at_10
|
136 |
+
value: 80.868
|
137 |
+
- type: recall_at_100
|
138 |
+
value: 98.86200000000001
|
139 |
+
- type: recall_at_1000
|
140 |
+
value: 99.431
|
141 |
+
- type: recall_at_3
|
142 |
+
value: 51.28
|
143 |
+
- type: recall_at_5
|
144 |
+
value: 65.22
|
145 |
+
- task:
|
146 |
+
type: Clustering
|
147 |
+
dataset:
|
148 |
+
type: mteb/arxiv-clustering-p2p
|
149 |
+
name: MTEB ArxivClusteringP2P
|
150 |
+
config: default
|
151 |
+
split: test
|
152 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
153 |
+
metrics:
|
154 |
+
- type: v_measure
|
155 |
+
value: 39.68441054431849
|
156 |
+
- task:
|
157 |
+
type: Clustering
|
158 |
+
dataset:
|
159 |
+
type: mteb/arxiv-clustering-s2s
|
160 |
+
name: MTEB ArxivClusteringS2S
|
161 |
+
config: default
|
162 |
+
split: test
|
163 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
164 |
+
metrics:
|
165 |
+
- type: v_measure
|
166 |
+
value: 29.188539728343844
|
167 |
+
- task:
|
168 |
+
type: Reranking
|
169 |
+
dataset:
|
170 |
+
type: mteb/askubuntudupquestions-reranking
|
171 |
+
name: MTEB AskUbuntuDupQuestions
|
172 |
+
config: default
|
173 |
+
split: test
|
174 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
175 |
+
metrics:
|
176 |
+
- type: map
|
177 |
+
value: 63.173362687519784
|
178 |
+
- type: mrr
|
179 |
+
value: 76.18860748362133
|
180 |
+
- task:
|
181 |
+
type: STS
|
182 |
+
dataset:
|
183 |
+
type: mteb/biosses-sts
|
184 |
+
name: MTEB BIOSSES
|
185 |
+
config: default
|
186 |
+
split: test
|
187 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
188 |
+
metrics:
|
189 |
+
- type: cos_sim_spearman
|
190 |
+
value: 82.30789953771232
|
191 |
+
- task:
|
192 |
+
type: Classification
|
193 |
+
dataset:
|
194 |
+
type: mteb/banking77
|
195 |
+
name: MTEB Banking77Classification
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
199 |
+
metrics:
|
200 |
+
- type: accuracy
|
201 |
+
value: 77.03571428571428
|
202 |
+
- type: f1
|
203 |
+
value: 75.87384305045917
|
204 |
+
- task:
|
205 |
+
type: Clustering
|
206 |
+
dataset:
|
207 |
+
type: mteb/biorxiv-clustering-p2p
|
208 |
+
name: MTEB BiorxivClusteringP2P
|
209 |
+
config: default
|
210 |
+
split: test
|
211 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
212 |
+
metrics:
|
213 |
+
- type: v_measure
|
214 |
+
value: 32.98041170516364
|
215 |
+
- task:
|
216 |
+
type: Clustering
|
217 |
+
dataset:
|
218 |
+
type: mteb/biorxiv-clustering-s2s
|
219 |
+
name: MTEB BiorxivClusteringS2S
|
220 |
+
config: default
|
221 |
+
split: test
|
222 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
223 |
+
metrics:
|
224 |
+
- type: v_measure
|
225 |
+
value: 25.71652988451154
|
226 |
+
- task:
|
227 |
+
type: Retrieval
|
228 |
+
dataset:
|
229 |
+
type: BeIR/cqadupstack
|
230 |
+
name: MTEB CQADupstackAndroidRetrieval
|
231 |
+
config: default
|
232 |
+
split: test
|
233 |
+
revision: None
|
234 |
+
metrics:
|
235 |
+
- type: map_at_1
|
236 |
+
value: 33.739999999999995
|
237 |
+
- type: map_at_10
|
238 |
+
value: 46.197
|
239 |
+
- type: map_at_100
|
240 |
+
value: 47.814
|
241 |
+
- type: map_at_1000
|
242 |
+
value: 47.934
|
243 |
+
- type: map_at_3
|
244 |
+
value: 43.091
|
245 |
+
- type: map_at_5
|
246 |
+
value: 44.81
|
247 |
+
- type: mrr_at_1
|
248 |
+
value: 41.059
|
249 |
+
- type: mrr_at_10
|
250 |
+
value: 52.292
|
251 |
+
- type: mrr_at_100
|
252 |
+
value: 52.978
|
253 |
+
- type: mrr_at_1000
|
254 |
+
value: 53.015
|
255 |
+
- type: mrr_at_3
|
256 |
+
value: 49.976
|
257 |
+
- type: mrr_at_5
|
258 |
+
value: 51.449999999999996
|
259 |
+
- type: ndcg_at_1
|
260 |
+
value: 41.059
|
261 |
+
- type: ndcg_at_10
|
262 |
+
value: 52.608
|
263 |
+
- type: ndcg_at_100
|
264 |
+
value: 57.965
|
265 |
+
- type: ndcg_at_1000
|
266 |
+
value: 59.775999999999996
|
267 |
+
- type: ndcg_at_3
|
268 |
+
value: 48.473
|
269 |
+
- type: ndcg_at_5
|
270 |
+
value: 50.407999999999994
|
271 |
+
- type: precision_at_1
|
272 |
+
value: 41.059
|
273 |
+
- type: precision_at_10
|
274 |
+
value: 9.943
|
275 |
+
- type: precision_at_100
|
276 |
+
value: 1.6070000000000002
|
277 |
+
- type: precision_at_1000
|
278 |
+
value: 0.20500000000000002
|
279 |
+
- type: precision_at_3
|
280 |
+
value: 23.413999999999998
|
281 |
+
- type: precision_at_5
|
282 |
+
value: 16.481
|
283 |
+
- type: recall_at_1
|
284 |
+
value: 33.739999999999995
|
285 |
+
- type: recall_at_10
|
286 |
+
value: 63.888999999999996
|
287 |
+
- type: recall_at_100
|
288 |
+
value: 85.832
|
289 |
+
- type: recall_at_1000
|
290 |
+
value: 97.475
|
291 |
+
- type: recall_at_3
|
292 |
+
value: 51.953
|
293 |
+
- type: recall_at_5
|
294 |
+
value: 57.498000000000005
|
295 |
+
- task:
|
296 |
+
type: Retrieval
|
297 |
+
dataset:
|
298 |
+
type: BeIR/cqadupstack
|
299 |
+
name: MTEB CQADupstackEnglishRetrieval
|
300 |
+
config: default
|
301 |
+
split: test
|
302 |
+
revision: None
|
303 |
+
metrics:
|
304 |
+
- type: map_at_1
|
305 |
+
value: 31.169999999999998
|
306 |
+
- type: map_at_10
|
307 |
+
value: 41.455
|
308 |
+
- type: map_at_100
|
309 |
+
value: 42.716
|
310 |
+
- type: map_at_1000
|
311 |
+
value: 42.847
|
312 |
+
- type: map_at_3
|
313 |
+
value: 38.568999999999996
|
314 |
+
- type: map_at_5
|
315 |
+
value: 40.099000000000004
|
316 |
+
- type: mrr_at_1
|
317 |
+
value: 39.427
|
318 |
+
- type: mrr_at_10
|
319 |
+
value: 47.818
|
320 |
+
- type: mrr_at_100
|
321 |
+
value: 48.519
|
322 |
+
- type: mrr_at_1000
|
323 |
+
value: 48.558
|
324 |
+
- type: mrr_at_3
|
325 |
+
value: 45.86
|
326 |
+
- type: mrr_at_5
|
327 |
+
value: 46.936
|
328 |
+
- type: ndcg_at_1
|
329 |
+
value: 39.427
|
330 |
+
- type: ndcg_at_10
|
331 |
+
value: 47.181
|
332 |
+
- type: ndcg_at_100
|
333 |
+
value: 51.737
|
334 |
+
- type: ndcg_at_1000
|
335 |
+
value: 53.74
|
336 |
+
- type: ndcg_at_3
|
337 |
+
value: 43.261
|
338 |
+
- type: ndcg_at_5
|
339 |
+
value: 44.891
|
340 |
+
- type: precision_at_1
|
341 |
+
value: 39.427
|
342 |
+
- type: precision_at_10
|
343 |
+
value: 8.847
|
344 |
+
- type: precision_at_100
|
345 |
+
value: 1.425
|
346 |
+
- type: precision_at_1000
|
347 |
+
value: 0.189
|
348 |
+
- type: precision_at_3
|
349 |
+
value: 20.785999999999998
|
350 |
+
- type: precision_at_5
|
351 |
+
value: 14.560999999999998
|
352 |
+
- type: recall_at_1
|
353 |
+
value: 31.169999999999998
|
354 |
+
- type: recall_at_10
|
355 |
+
value: 56.971000000000004
|
356 |
+
- type: recall_at_100
|
357 |
+
value: 76.31400000000001
|
358 |
+
- type: recall_at_1000
|
359 |
+
value: 88.93900000000001
|
360 |
+
- type: recall_at_3
|
361 |
+
value: 45.208
|
362 |
+
- type: recall_at_5
|
363 |
+
value: 49.923
|
364 |
+
- task:
|
365 |
+
type: Retrieval
|
366 |
+
dataset:
|
367 |
+
type: BeIR/cqadupstack
|
368 |
+
name: MTEB CQADupstackGamingRetrieval
|
369 |
+
config: default
|
370 |
+
split: test
|
371 |
+
revision: None
|
372 |
+
metrics:
|
373 |
+
- type: map_at_1
|
374 |
+
value: 39.682
|
375 |
+
- type: map_at_10
|
376 |
+
value: 52.766000000000005
|
377 |
+
- type: map_at_100
|
378 |
+
value: 53.84100000000001
|
379 |
+
- type: map_at_1000
|
380 |
+
value: 53.898
|
381 |
+
- type: map_at_3
|
382 |
+
value: 49.291000000000004
|
383 |
+
- type: map_at_5
|
384 |
+
value: 51.365
|
385 |
+
- type: mrr_at_1
|
386 |
+
value: 45.266
|
387 |
+
- type: mrr_at_10
|
388 |
+
value: 56.093
|
389 |
+
- type: mrr_at_100
|
390 |
+
value: 56.763
|
391 |
+
- type: mrr_at_1000
|
392 |
+
value: 56.793000000000006
|
393 |
+
- type: mrr_at_3
|
394 |
+
value: 53.668000000000006
|
395 |
+
- type: mrr_at_5
|
396 |
+
value: 55.1
|
397 |
+
- type: ndcg_at_1
|
398 |
+
value: 45.266
|
399 |
+
- type: ndcg_at_10
|
400 |
+
value: 58.836
|
401 |
+
- type: ndcg_at_100
|
402 |
+
value: 62.863
|
403 |
+
- type: ndcg_at_1000
|
404 |
+
value: 63.912
|
405 |
+
- type: ndcg_at_3
|
406 |
+
value: 53.19199999999999
|
407 |
+
- type: ndcg_at_5
|
408 |
+
value: 56.125
|
409 |
+
- type: precision_at_1
|
410 |
+
value: 45.266
|
411 |
+
- type: precision_at_10
|
412 |
+
value: 9.492
|
413 |
+
- type: precision_at_100
|
414 |
+
value: 1.236
|
415 |
+
- type: precision_at_1000
|
416 |
+
value: 0.13699999999999998
|
417 |
+
- type: precision_at_3
|
418 |
+
value: 23.762
|
419 |
+
- type: precision_at_5
|
420 |
+
value: 16.414
|
421 |
+
- type: recall_at_1
|
422 |
+
value: 39.682
|
423 |
+
- type: recall_at_10
|
424 |
+
value: 73.233
|
425 |
+
- type: recall_at_100
|
426 |
+
value: 90.335
|
427 |
+
- type: recall_at_1000
|
428 |
+
value: 97.452
|
429 |
+
- type: recall_at_3
|
430 |
+
value: 58.562000000000005
|
431 |
+
- type: recall_at_5
|
432 |
+
value: 65.569
|
433 |
+
- task:
|
434 |
+
type: Retrieval
|
435 |
+
dataset:
|
436 |
+
type: BeIR/cqadupstack
|
437 |
+
name: MTEB CQADupstackGisRetrieval
|
438 |
+
config: default
|
439 |
+
split: test
|
440 |
+
revision: None
|
441 |
+
metrics:
|
442 |
+
- type: map_at_1
|
443 |
+
value: 26.743
|
444 |
+
- type: map_at_10
|
445 |
+
value: 34.016000000000005
|
446 |
+
- type: map_at_100
|
447 |
+
value: 35.028999999999996
|
448 |
+
- type: map_at_1000
|
449 |
+
value: 35.113
|
450 |
+
- type: map_at_3
|
451 |
+
value: 31.763
|
452 |
+
- type: map_at_5
|
453 |
+
value: 33.013999999999996
|
454 |
+
- type: mrr_at_1
|
455 |
+
value: 28.927000000000003
|
456 |
+
- type: mrr_at_10
|
457 |
+
value: 36.32
|
458 |
+
- type: mrr_at_100
|
459 |
+
value: 37.221
|
460 |
+
- type: mrr_at_1000
|
461 |
+
value: 37.281
|
462 |
+
- type: mrr_at_3
|
463 |
+
value: 34.105000000000004
|
464 |
+
- type: mrr_at_5
|
465 |
+
value: 35.371
|
466 |
+
- type: ndcg_at_1
|
467 |
+
value: 28.927000000000003
|
468 |
+
- type: ndcg_at_10
|
469 |
+
value: 38.474000000000004
|
470 |
+
- type: ndcg_at_100
|
471 |
+
value: 43.580000000000005
|
472 |
+
- type: ndcg_at_1000
|
473 |
+
value: 45.64
|
474 |
+
- type: ndcg_at_3
|
475 |
+
value: 34.035
|
476 |
+
- type: ndcg_at_5
|
477 |
+
value: 36.186
|
478 |
+
- type: precision_at_1
|
479 |
+
value: 28.927000000000003
|
480 |
+
- type: precision_at_10
|
481 |
+
value: 5.74
|
482 |
+
- type: precision_at_100
|
483 |
+
value: 0.8710000000000001
|
484 |
+
- type: precision_at_1000
|
485 |
+
value: 0.108
|
486 |
+
- type: precision_at_3
|
487 |
+
value: 14.124
|
488 |
+
- type: precision_at_5
|
489 |
+
value: 9.74
|
490 |
+
- type: recall_at_1
|
491 |
+
value: 26.743
|
492 |
+
- type: recall_at_10
|
493 |
+
value: 49.955
|
494 |
+
- type: recall_at_100
|
495 |
+
value: 73.904
|
496 |
+
- type: recall_at_1000
|
497 |
+
value: 89.133
|
498 |
+
- type: recall_at_3
|
499 |
+
value: 38.072
|
500 |
+
- type: recall_at_5
|
501 |
+
value: 43.266
|
502 |
+
- task:
|
503 |
+
type: Retrieval
|
504 |
+
dataset:
|
505 |
+
type: BeIR/cqadupstack
|
506 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
507 |
+
config: default
|
508 |
+
split: test
|
509 |
+
revision: None
|
510 |
+
metrics:
|
511 |
+
- type: map_at_1
|
512 |
+
value: 16.928
|
513 |
+
- type: map_at_10
|
514 |
+
value: 23.549
|
515 |
+
- type: map_at_100
|
516 |
+
value: 24.887
|
517 |
+
- type: map_at_1000
|
518 |
+
value: 25.018
|
519 |
+
- type: map_at_3
|
520 |
+
value: 21.002000000000002
|
521 |
+
- type: map_at_5
|
522 |
+
value: 22.256
|
523 |
+
- type: mrr_at_1
|
524 |
+
value: 21.02
|
525 |
+
- type: mrr_at_10
|
526 |
+
value: 27.898
|
527 |
+
- type: mrr_at_100
|
528 |
+
value: 29.018
|
529 |
+
- type: mrr_at_1000
|
530 |
+
value: 29.099999999999998
|
531 |
+
- type: mrr_at_3
|
532 |
+
value: 25.456
|
533 |
+
- type: mrr_at_5
|
534 |
+
value: 26.625
|
535 |
+
- type: ndcg_at_1
|
536 |
+
value: 21.02
|
537 |
+
- type: ndcg_at_10
|
538 |
+
value: 28.277
|
539 |
+
- type: ndcg_at_100
|
540 |
+
value: 34.54
|
541 |
+
- type: ndcg_at_1000
|
542 |
+
value: 37.719
|
543 |
+
- type: ndcg_at_3
|
544 |
+
value: 23.707
|
545 |
+
- type: ndcg_at_5
|
546 |
+
value: 25.482
|
547 |
+
- type: precision_at_1
|
548 |
+
value: 21.02
|
549 |
+
- type: precision_at_10
|
550 |
+
value: 5.361
|
551 |
+
- type: precision_at_100
|
552 |
+
value: 0.9809999999999999
|
553 |
+
- type: precision_at_1000
|
554 |
+
value: 0.13899999999999998
|
555 |
+
- type: precision_at_3
|
556 |
+
value: 11.401
|
557 |
+
- type: precision_at_5
|
558 |
+
value: 8.209
|
559 |
+
- type: recall_at_1
|
560 |
+
value: 16.928
|
561 |
+
- type: recall_at_10
|
562 |
+
value: 38.601
|
563 |
+
- type: recall_at_100
|
564 |
+
value: 65.759
|
565 |
+
- type: recall_at_1000
|
566 |
+
value: 88.543
|
567 |
+
- type: recall_at_3
|
568 |
+
value: 25.556
|
569 |
+
- type: recall_at_5
|
570 |
+
value: 30.447000000000003
|
571 |
+
- task:
|
572 |
+
type: Retrieval
|
573 |
+
dataset:
|
574 |
+
type: BeIR/cqadupstack
|
575 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
576 |
+
config: default
|
577 |
+
split: test
|
578 |
+
revision: None
|
579 |
+
metrics:
|
580 |
+
- type: map_at_1
|
581 |
+
value: 28.549000000000003
|
582 |
+
- type: map_at_10
|
583 |
+
value: 38.426
|
584 |
+
- type: map_at_100
|
585 |
+
value: 39.845000000000006
|
586 |
+
- type: map_at_1000
|
587 |
+
value: 39.956
|
588 |
+
- type: map_at_3
|
589 |
+
value: 35.372
|
590 |
+
- type: map_at_5
|
591 |
+
value: 37.204
|
592 |
+
- type: mrr_at_1
|
593 |
+
value: 35.034
|
594 |
+
- type: mrr_at_10
|
595 |
+
value: 44.041000000000004
|
596 |
+
- type: mrr_at_100
|
597 |
+
value: 44.95
|
598 |
+
- type: mrr_at_1000
|
599 |
+
value: 44.997
|
600 |
+
- type: mrr_at_3
|
601 |
+
value: 41.498000000000005
|
602 |
+
- type: mrr_at_5
|
603 |
+
value: 43.077
|
604 |
+
- type: ndcg_at_1
|
605 |
+
value: 35.034
|
606 |
+
- type: ndcg_at_10
|
607 |
+
value: 44.218
|
608 |
+
- type: ndcg_at_100
|
609 |
+
value: 49.958000000000006
|
610 |
+
- type: ndcg_at_1000
|
611 |
+
value: 52.019000000000005
|
612 |
+
- type: ndcg_at_3
|
613 |
+
value: 39.34
|
614 |
+
- type: ndcg_at_5
|
615 |
+
value: 41.892
|
616 |
+
- type: precision_at_1
|
617 |
+
value: 35.034
|
618 |
+
- type: precision_at_10
|
619 |
+
value: 7.911
|
620 |
+
- type: precision_at_100
|
621 |
+
value: 1.26
|
622 |
+
- type: precision_at_1000
|
623 |
+
value: 0.16
|
624 |
+
- type: precision_at_3
|
625 |
+
value: 18.511
|
626 |
+
- type: precision_at_5
|
627 |
+
value: 13.205
|
628 |
+
- type: recall_at_1
|
629 |
+
value: 28.549000000000003
|
630 |
+
- type: recall_at_10
|
631 |
+
value: 56.035999999999994
|
632 |
+
- type: recall_at_100
|
633 |
+
value: 79.701
|
634 |
+
- type: recall_at_1000
|
635 |
+
value: 93.149
|
636 |
+
- type: recall_at_3
|
637 |
+
value: 42.275
|
638 |
+
- type: recall_at_5
|
639 |
+
value: 49.097
|
640 |
+
- task:
|
641 |
+
type: Retrieval
|
642 |
+
dataset:
|
643 |
+
type: BeIR/cqadupstack
|
644 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
645 |
+
config: default
|
646 |
+
split: test
|
647 |
+
revision: None
|
648 |
+
metrics:
|
649 |
+
- type: map_at_1
|
650 |
+
value: 29.391000000000002
|
651 |
+
- type: map_at_10
|
652 |
+
value: 39.48
|
653 |
+
- type: map_at_100
|
654 |
+
value: 40.727000000000004
|
655 |
+
- type: map_at_1000
|
656 |
+
value: 40.835
|
657 |
+
- type: map_at_3
|
658 |
+
value: 36.234
|
659 |
+
- type: map_at_5
|
660 |
+
value: 37.877
|
661 |
+
- type: mrr_at_1
|
662 |
+
value: 35.959
|
663 |
+
- type: mrr_at_10
|
664 |
+
value: 44.726
|
665 |
+
- type: mrr_at_100
|
666 |
+
value: 45.531
|
667 |
+
- type: mrr_at_1000
|
668 |
+
value: 45.582
|
669 |
+
- type: mrr_at_3
|
670 |
+
value: 42.047000000000004
|
671 |
+
- type: mrr_at_5
|
672 |
+
value: 43.611
|
673 |
+
- type: ndcg_at_1
|
674 |
+
value: 35.959
|
675 |
+
- type: ndcg_at_10
|
676 |
+
value: 45.303
|
677 |
+
- type: ndcg_at_100
|
678 |
+
value: 50.683
|
679 |
+
- type: ndcg_at_1000
|
680 |
+
value: 52.818
|
681 |
+
- type: ndcg_at_3
|
682 |
+
value: 39.987
|
683 |
+
- type: ndcg_at_5
|
684 |
+
value: 42.243
|
685 |
+
- type: precision_at_1
|
686 |
+
value: 35.959
|
687 |
+
- type: precision_at_10
|
688 |
+
value: 8.241999999999999
|
689 |
+
- type: precision_at_100
|
690 |
+
value: 1.274
|
691 |
+
- type: precision_at_1000
|
692 |
+
value: 0.163
|
693 |
+
- type: precision_at_3
|
694 |
+
value: 18.836
|
695 |
+
- type: precision_at_5
|
696 |
+
value: 13.196
|
697 |
+
- type: recall_at_1
|
698 |
+
value: 29.391000000000002
|
699 |
+
- type: recall_at_10
|
700 |
+
value: 57.364000000000004
|
701 |
+
- type: recall_at_100
|
702 |
+
value: 80.683
|
703 |
+
- type: recall_at_1000
|
704 |
+
value: 94.918
|
705 |
+
- type: recall_at_3
|
706 |
+
value: 42.263
|
707 |
+
- type: recall_at_5
|
708 |
+
value: 48.634
|
709 |
+
- task:
|
710 |
+
type: Retrieval
|
711 |
+
dataset:
|
712 |
+
type: BeIR/cqadupstack
|
713 |
+
name: MTEB CQADupstackRetrieval
|
714 |
+
config: default
|
715 |
+
split: test
|
716 |
+
revision: None
|
717 |
+
metrics:
|
718 |
+
- type: map_at_1
|
719 |
+
value: 26.791749999999997
|
720 |
+
- type: map_at_10
|
721 |
+
value: 35.75541666666667
|
722 |
+
- type: map_at_100
|
723 |
+
value: 37.00791666666667
|
724 |
+
- type: map_at_1000
|
725 |
+
value: 37.12408333333333
|
726 |
+
- type: map_at_3
|
727 |
+
value: 33.02966666666667
|
728 |
+
- type: map_at_5
|
729 |
+
value: 34.56866666666667
|
730 |
+
- type: mrr_at_1
|
731 |
+
value: 31.744333333333337
|
732 |
+
- type: mrr_at_10
|
733 |
+
value: 39.9925
|
734 |
+
- type: mrr_at_100
|
735 |
+
value: 40.86458333333333
|
736 |
+
- type: mrr_at_1000
|
737 |
+
value: 40.92175000000001
|
738 |
+
- type: mrr_at_3
|
739 |
+
value: 37.68183333333334
|
740 |
+
- type: mrr_at_5
|
741 |
+
value: 39.028499999999994
|
742 |
+
- type: ndcg_at_1
|
743 |
+
value: 31.744333333333337
|
744 |
+
- type: ndcg_at_10
|
745 |
+
value: 40.95008333333334
|
746 |
+
- type: ndcg_at_100
|
747 |
+
value: 46.25966666666667
|
748 |
+
- type: ndcg_at_1000
|
749 |
+
value: 48.535333333333334
|
750 |
+
- type: ndcg_at_3
|
751 |
+
value: 36.43333333333333
|
752 |
+
- type: ndcg_at_5
|
753 |
+
value: 38.602333333333334
|
754 |
+
- type: precision_at_1
|
755 |
+
value: 31.744333333333337
|
756 |
+
- type: precision_at_10
|
757 |
+
value: 7.135166666666666
|
758 |
+
- type: precision_at_100
|
759 |
+
value: 1.1535833333333334
|
760 |
+
- type: precision_at_1000
|
761 |
+
value: 0.15391666666666665
|
762 |
+
- type: precision_at_3
|
763 |
+
value: 16.713
|
764 |
+
- type: precision_at_5
|
765 |
+
value: 11.828416666666666
|
766 |
+
- type: recall_at_1
|
767 |
+
value: 26.791749999999997
|
768 |
+
- type: recall_at_10
|
769 |
+
value: 51.98625
|
770 |
+
- type: recall_at_100
|
771 |
+
value: 75.30358333333334
|
772 |
+
- type: recall_at_1000
|
773 |
+
value: 91.05433333333333
|
774 |
+
- type: recall_at_3
|
775 |
+
value: 39.39583333333333
|
776 |
+
- type: recall_at_5
|
777 |
+
value: 45.05925
|
778 |
+
- task:
|
779 |
+
type: Retrieval
|
780 |
+
dataset:
|
781 |
+
type: BeIR/cqadupstack
|
782 |
+
name: MTEB CQADupstackStatsRetrieval
|
783 |
+
config: default
|
784 |
+
split: test
|
785 |
+
revision: None
|
786 |
+
metrics:
|
787 |
+
- type: map_at_1
|
788 |
+
value: 22.219
|
789 |
+
- type: map_at_10
|
790 |
+
value: 29.162
|
791 |
+
- type: map_at_100
|
792 |
+
value: 30.049999999999997
|
793 |
+
- type: map_at_1000
|
794 |
+
value: 30.144
|
795 |
+
- type: map_at_3
|
796 |
+
value: 27.204
|
797 |
+
- type: map_at_5
|
798 |
+
value: 28.351
|
799 |
+
- type: mrr_at_1
|
800 |
+
value: 25.153
|
801 |
+
- type: mrr_at_10
|
802 |
+
value: 31.814999999999998
|
803 |
+
- type: mrr_at_100
|
804 |
+
value: 32.573
|
805 |
+
- type: mrr_at_1000
|
806 |
+
value: 32.645
|
807 |
+
- type: mrr_at_3
|
808 |
+
value: 29.934
|
809 |
+
- type: mrr_at_5
|
810 |
+
value: 30.946
|
811 |
+
- type: ndcg_at_1
|
812 |
+
value: 25.153
|
813 |
+
- type: ndcg_at_10
|
814 |
+
value: 33.099000000000004
|
815 |
+
- type: ndcg_at_100
|
816 |
+
value: 37.768
|
817 |
+
- type: ndcg_at_1000
|
818 |
+
value: 40.331
|
819 |
+
- type: ndcg_at_3
|
820 |
+
value: 29.473
|
821 |
+
- type: ndcg_at_5
|
822 |
+
value: 31.206
|
823 |
+
- type: precision_at_1
|
824 |
+
value: 25.153
|
825 |
+
- type: precision_at_10
|
826 |
+
value: 5.183999999999999
|
827 |
+
- type: precision_at_100
|
828 |
+
value: 0.8170000000000001
|
829 |
+
- type: precision_at_1000
|
830 |
+
value: 0.11100000000000002
|
831 |
+
- type: precision_at_3
|
832 |
+
value: 12.831999999999999
|
833 |
+
- type: precision_at_5
|
834 |
+
value: 8.895999999999999
|
835 |
+
- type: recall_at_1
|
836 |
+
value: 22.219
|
837 |
+
- type: recall_at_10
|
838 |
+
value: 42.637
|
839 |
+
- type: recall_at_100
|
840 |
+
value: 64.704
|
841 |
+
- type: recall_at_1000
|
842 |
+
value: 83.963
|
843 |
+
- type: recall_at_3
|
844 |
+
value: 32.444
|
845 |
+
- type: recall_at_5
|
846 |
+
value: 36.802
|
847 |
+
- task:
|
848 |
+
type: Retrieval
|
849 |
+
dataset:
|
850 |
+
type: BeIR/cqadupstack
|
851 |
+
name: MTEB CQADupstackTexRetrieval
|
852 |
+
config: default
|
853 |
+
split: test
|
854 |
+
revision: None
|
855 |
+
metrics:
|
856 |
+
- type: map_at_1
|
857 |
+
value: 17.427999999999997
|
858 |
+
- type: map_at_10
|
859 |
+
value: 24.029
|
860 |
+
- type: map_at_100
|
861 |
+
value: 25.119999999999997
|
862 |
+
- type: map_at_1000
|
863 |
+
value: 25.257
|
864 |
+
- type: map_at_3
|
865 |
+
value: 22.016
|
866 |
+
- type: map_at_5
|
867 |
+
value: 23.143
|
868 |
+
- type: mrr_at_1
|
869 |
+
value: 21.129
|
870 |
+
- type: mrr_at_10
|
871 |
+
value: 27.750000000000004
|
872 |
+
- type: mrr_at_100
|
873 |
+
value: 28.666999999999998
|
874 |
+
- type: mrr_at_1000
|
875 |
+
value: 28.754999999999995
|
876 |
+
- type: mrr_at_3
|
877 |
+
value: 25.849
|
878 |
+
- type: mrr_at_5
|
879 |
+
value: 26.939999999999998
|
880 |
+
- type: ndcg_at_1
|
881 |
+
value: 21.129
|
882 |
+
- type: ndcg_at_10
|
883 |
+
value: 28.203
|
884 |
+
- type: ndcg_at_100
|
885 |
+
value: 33.44
|
886 |
+
- type: ndcg_at_1000
|
887 |
+
value: 36.61
|
888 |
+
- type: ndcg_at_3
|
889 |
+
value: 24.648999999999997
|
890 |
+
- type: ndcg_at_5
|
891 |
+
value: 26.316
|
892 |
+
- type: precision_at_1
|
893 |
+
value: 21.129
|
894 |
+
- type: precision_at_10
|
895 |
+
value: 5.055
|
896 |
+
- type: precision_at_100
|
897 |
+
value: 0.909
|
898 |
+
- type: precision_at_1000
|
899 |
+
value: 0.13699999999999998
|
900 |
+
- type: precision_at_3
|
901 |
+
value: 11.666
|
902 |
+
- type: precision_at_5
|
903 |
+
value: 8.3
|
904 |
+
- type: recall_at_1
|
905 |
+
value: 17.427999999999997
|
906 |
+
- type: recall_at_10
|
907 |
+
value: 36.923
|
908 |
+
- type: recall_at_100
|
909 |
+
value: 60.606
|
910 |
+
- type: recall_at_1000
|
911 |
+
value: 83.19
|
912 |
+
- type: recall_at_3
|
913 |
+
value: 26.845000000000002
|
914 |
+
- type: recall_at_5
|
915 |
+
value: 31.247000000000003
|
916 |
+
- task:
|
917 |
+
type: Retrieval
|
918 |
+
dataset:
|
919 |
+
type: BeIR/cqadupstack
|
920 |
+
name: MTEB CQADupstackUnixRetrieval
|
921 |
+
config: default
|
922 |
+
split: test
|
923 |
+
revision: None
|
924 |
+
metrics:
|
925 |
+
- type: map_at_1
|
926 |
+
value: 26.457000000000004
|
927 |
+
- type: map_at_10
|
928 |
+
value: 35.228
|
929 |
+
- type: map_at_100
|
930 |
+
value: 36.475
|
931 |
+
- type: map_at_1000
|
932 |
+
value: 36.585
|
933 |
+
- type: map_at_3
|
934 |
+
value: 32.444
|
935 |
+
- type: map_at_5
|
936 |
+
value: 34.046
|
937 |
+
- type: mrr_at_1
|
938 |
+
value: 30.784
|
939 |
+
- type: mrr_at_10
|
940 |
+
value: 39.133
|
941 |
+
- type: mrr_at_100
|
942 |
+
value: 40.11
|
943 |
+
- type: mrr_at_1000
|
944 |
+
value: 40.169
|
945 |
+
- type: mrr_at_3
|
946 |
+
value: 36.692
|
947 |
+
- type: mrr_at_5
|
948 |
+
value: 38.17
|
949 |
+
- type: ndcg_at_1
|
950 |
+
value: 30.784
|
951 |
+
- type: ndcg_at_10
|
952 |
+
value: 40.358
|
953 |
+
- type: ndcg_at_100
|
954 |
+
value: 46.119
|
955 |
+
- type: ndcg_at_1000
|
956 |
+
value: 48.428
|
957 |
+
- type: ndcg_at_3
|
958 |
+
value: 35.504000000000005
|
959 |
+
- type: ndcg_at_5
|
960 |
+
value: 37.864
|
961 |
+
- type: precision_at_1
|
962 |
+
value: 30.784
|
963 |
+
- type: precision_at_10
|
964 |
+
value: 6.800000000000001
|
965 |
+
- type: precision_at_100
|
966 |
+
value: 1.083
|
967 |
+
- type: precision_at_1000
|
968 |
+
value: 0.13899999999999998
|
969 |
+
- type: precision_at_3
|
970 |
+
value: 15.920000000000002
|
971 |
+
- type: precision_at_5
|
972 |
+
value: 11.437
|
973 |
+
- type: recall_at_1
|
974 |
+
value: 26.457000000000004
|
975 |
+
- type: recall_at_10
|
976 |
+
value: 51.845
|
977 |
+
- type: recall_at_100
|
978 |
+
value: 77.046
|
979 |
+
- type: recall_at_1000
|
980 |
+
value: 92.892
|
981 |
+
- type: recall_at_3
|
982 |
+
value: 38.89
|
983 |
+
- type: recall_at_5
|
984 |
+
value: 44.688
|
985 |
+
- task:
|
986 |
+
type: Retrieval
|
987 |
+
dataset:
|
988 |
+
type: BeIR/cqadupstack
|
989 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
990 |
+
config: default
|
991 |
+
split: test
|
992 |
+
revision: None
|
993 |
+
metrics:
|
994 |
+
- type: map_at_1
|
995 |
+
value: 29.378999999999998
|
996 |
+
- type: map_at_10
|
997 |
+
value: 37.373
|
998 |
+
- type: map_at_100
|
999 |
+
value: 39.107
|
1000 |
+
- type: map_at_1000
|
1001 |
+
value: 39.317
|
1002 |
+
- type: map_at_3
|
1003 |
+
value: 34.563
|
1004 |
+
- type: map_at_5
|
1005 |
+
value: 36.173
|
1006 |
+
- type: mrr_at_1
|
1007 |
+
value: 35.178
|
1008 |
+
- type: mrr_at_10
|
1009 |
+
value: 42.44
|
1010 |
+
- type: mrr_at_100
|
1011 |
+
value: 43.434
|
1012 |
+
- type: mrr_at_1000
|
1013 |
+
value: 43.482
|
1014 |
+
- type: mrr_at_3
|
1015 |
+
value: 39.987
|
1016 |
+
- type: mrr_at_5
|
1017 |
+
value: 41.370000000000005
|
1018 |
+
- type: ndcg_at_1
|
1019 |
+
value: 35.178
|
1020 |
+
- type: ndcg_at_10
|
1021 |
+
value: 42.82
|
1022 |
+
- type: ndcg_at_100
|
1023 |
+
value: 48.935
|
1024 |
+
- type: ndcg_at_1000
|
1025 |
+
value: 51.28
|
1026 |
+
- type: ndcg_at_3
|
1027 |
+
value: 38.562999999999995
|
1028 |
+
- type: ndcg_at_5
|
1029 |
+
value: 40.687
|
1030 |
+
- type: precision_at_1
|
1031 |
+
value: 35.178
|
1032 |
+
- type: precision_at_10
|
1033 |
+
value: 7.945
|
1034 |
+
- type: precision_at_100
|
1035 |
+
value: 1.524
|
1036 |
+
- type: precision_at_1000
|
1037 |
+
value: 0.242
|
1038 |
+
- type: precision_at_3
|
1039 |
+
value: 17.721
|
1040 |
+
- type: precision_at_5
|
1041 |
+
value: 12.925
|
1042 |
+
- type: recall_at_1
|
1043 |
+
value: 29.378999999999998
|
1044 |
+
- type: recall_at_10
|
1045 |
+
value: 52.141999999999996
|
1046 |
+
- type: recall_at_100
|
1047 |
+
value: 79.49000000000001
|
1048 |
+
- type: recall_at_1000
|
1049 |
+
value: 93.782
|
1050 |
+
- type: recall_at_3
|
1051 |
+
value: 39.579
|
1052 |
+
- type: recall_at_5
|
1053 |
+
value: 45.462
|
1054 |
+
- task:
|
1055 |
+
type: Retrieval
|
1056 |
+
dataset:
|
1057 |
+
type: BeIR/cqadupstack
|
1058 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1059 |
+
config: default
|
1060 |
+
split: test
|
1061 |
+
revision: None
|
1062 |
+
metrics:
|
1063 |
+
- type: map_at_1
|
1064 |
+
value: 19.814999999999998
|
1065 |
+
- type: map_at_10
|
1066 |
+
value: 27.383999999999997
|
1067 |
+
- type: map_at_100
|
1068 |
+
value: 28.483999999999998
|
1069 |
+
- type: map_at_1000
|
1070 |
+
value: 28.585
|
1071 |
+
- type: map_at_3
|
1072 |
+
value: 24.807000000000002
|
1073 |
+
- type: map_at_5
|
1074 |
+
value: 26.485999999999997
|
1075 |
+
- type: mrr_at_1
|
1076 |
+
value: 21.996
|
1077 |
+
- type: mrr_at_10
|
1078 |
+
value: 29.584
|
1079 |
+
- type: mrr_at_100
|
1080 |
+
value: 30.611
|
1081 |
+
- type: mrr_at_1000
|
1082 |
+
value: 30.684
|
1083 |
+
- type: mrr_at_3
|
1084 |
+
value: 27.11
|
1085 |
+
- type: mrr_at_5
|
1086 |
+
value: 28.746
|
1087 |
+
- type: ndcg_at_1
|
1088 |
+
value: 21.996
|
1089 |
+
- type: ndcg_at_10
|
1090 |
+
value: 32.024
|
1091 |
+
- type: ndcg_at_100
|
1092 |
+
value: 37.528
|
1093 |
+
- type: ndcg_at_1000
|
1094 |
+
value: 40.150999999999996
|
1095 |
+
- type: ndcg_at_3
|
1096 |
+
value: 27.016000000000002
|
1097 |
+
- type: ndcg_at_5
|
1098 |
+
value: 29.927999999999997
|
1099 |
+
- type: precision_at_1
|
1100 |
+
value: 21.996
|
1101 |
+
- type: precision_at_10
|
1102 |
+
value: 5.102
|
1103 |
+
- type: precision_at_100
|
1104 |
+
value: 0.856
|
1105 |
+
- type: precision_at_1000
|
1106 |
+
value: 0.117
|
1107 |
+
- type: precision_at_3
|
1108 |
+
value: 11.583
|
1109 |
+
- type: precision_at_5
|
1110 |
+
value: 8.577
|
1111 |
+
- type: recall_at_1
|
1112 |
+
value: 19.814999999999998
|
1113 |
+
- type: recall_at_10
|
1114 |
+
value: 44.239
|
1115 |
+
- type: recall_at_100
|
1116 |
+
value: 69.269
|
1117 |
+
- type: recall_at_1000
|
1118 |
+
value: 89.216
|
1119 |
+
- type: recall_at_3
|
1120 |
+
value: 31.102999999999998
|
1121 |
+
- type: recall_at_5
|
1122 |
+
value: 38.078
|
1123 |
+
- task:
|
1124 |
+
type: Retrieval
|
1125 |
+
dataset:
|
1126 |
+
type: climate-fever
|
1127 |
+
name: MTEB ClimateFEVER
|
1128 |
+
config: default
|
1129 |
+
split: test
|
1130 |
+
revision: None
|
1131 |
+
metrics:
|
1132 |
+
- type: map_at_1
|
1133 |
+
value: 11.349
|
1134 |
+
- type: map_at_10
|
1135 |
+
value: 19.436
|
1136 |
+
- type: map_at_100
|
1137 |
+
value: 21.282999999999998
|
1138 |
+
- type: map_at_1000
|
1139 |
+
value: 21.479
|
1140 |
+
- type: map_at_3
|
1141 |
+
value: 15.841
|
1142 |
+
- type: map_at_5
|
1143 |
+
value: 17.558
|
1144 |
+
- type: mrr_at_1
|
1145 |
+
value: 25.863000000000003
|
1146 |
+
- type: mrr_at_10
|
1147 |
+
value: 37.218
|
1148 |
+
- type: mrr_at_100
|
1149 |
+
value: 38.198
|
1150 |
+
- type: mrr_at_1000
|
1151 |
+
value: 38.236
|
1152 |
+
- type: mrr_at_3
|
1153 |
+
value: 33.409
|
1154 |
+
- type: mrr_at_5
|
1155 |
+
value: 35.602000000000004
|
1156 |
+
- type: ndcg_at_1
|
1157 |
+
value: 25.863000000000003
|
1158 |
+
- type: ndcg_at_10
|
1159 |
+
value: 27.953
|
1160 |
+
- type: ndcg_at_100
|
1161 |
+
value: 35.327
|
1162 |
+
- type: ndcg_at_1000
|
1163 |
+
value: 38.708999999999996
|
1164 |
+
- type: ndcg_at_3
|
1165 |
+
value: 21.985
|
1166 |
+
- type: ndcg_at_5
|
1167 |
+
value: 23.957
|
1168 |
+
- type: precision_at_1
|
1169 |
+
value: 25.863000000000003
|
1170 |
+
- type: precision_at_10
|
1171 |
+
value: 8.99
|
1172 |
+
- type: precision_at_100
|
1173 |
+
value: 1.6889999999999998
|
1174 |
+
- type: precision_at_1000
|
1175 |
+
value: 0.232
|
1176 |
+
- type: precision_at_3
|
1177 |
+
value: 16.308
|
1178 |
+
- type: precision_at_5
|
1179 |
+
value: 12.912
|
1180 |
+
- type: recall_at_1
|
1181 |
+
value: 11.349
|
1182 |
+
- type: recall_at_10
|
1183 |
+
value: 34.581
|
1184 |
+
- type: recall_at_100
|
1185 |
+
value: 60.178
|
1186 |
+
- type: recall_at_1000
|
1187 |
+
value: 78.88199999999999
|
1188 |
+
- type: recall_at_3
|
1189 |
+
value: 20.041999999999998
|
1190 |
+
- type: recall_at_5
|
1191 |
+
value: 25.458
|
1192 |
+
- task:
|
1193 |
+
type: Retrieval
|
1194 |
+
dataset:
|
1195 |
+
type: dbpedia-entity
|
1196 |
+
name: MTEB DBPedia
|
1197 |
+
config: default
|
1198 |
+
split: test
|
1199 |
+
revision: None
|
1200 |
+
metrics:
|
1201 |
+
- type: map_at_1
|
1202 |
+
value: 7.893
|
1203 |
+
- type: map_at_10
|
1204 |
+
value: 15.457
|
1205 |
+
- type: map_at_100
|
1206 |
+
value: 20.905
|
1207 |
+
- type: map_at_1000
|
1208 |
+
value: 22.116
|
1209 |
+
- type: map_at_3
|
1210 |
+
value: 11.593
|
1211 |
+
- type: map_at_5
|
1212 |
+
value: 13.134
|
1213 |
+
- type: mrr_at_1
|
1214 |
+
value: 57.49999999999999
|
1215 |
+
- type: mrr_at_10
|
1216 |
+
value: 65.467
|
1217 |
+
- type: mrr_at_100
|
1218 |
+
value: 66.022
|
1219 |
+
- type: mrr_at_1000
|
1220 |
+
value: 66.039
|
1221 |
+
- type: mrr_at_3
|
1222 |
+
value: 63.458000000000006
|
1223 |
+
- type: mrr_at_5
|
1224 |
+
value: 64.546
|
1225 |
+
- type: ndcg_at_1
|
1226 |
+
value: 45.875
|
1227 |
+
- type: ndcg_at_10
|
1228 |
+
value: 33.344
|
1229 |
+
- type: ndcg_at_100
|
1230 |
+
value: 36.849
|
1231 |
+
- type: ndcg_at_1000
|
1232 |
+
value: 44.03
|
1233 |
+
- type: ndcg_at_3
|
1234 |
+
value: 37.504
|
1235 |
+
- type: ndcg_at_5
|
1236 |
+
value: 34.892
|
1237 |
+
- type: precision_at_1
|
1238 |
+
value: 57.49999999999999
|
1239 |
+
- type: precision_at_10
|
1240 |
+
value: 25.95
|
1241 |
+
- type: precision_at_100
|
1242 |
+
value: 7.89
|
1243 |
+
- type: precision_at_1000
|
1244 |
+
value: 1.669
|
1245 |
+
- type: precision_at_3
|
1246 |
+
value: 40.333000000000006
|
1247 |
+
- type: precision_at_5
|
1248 |
+
value: 33.050000000000004
|
1249 |
+
- type: recall_at_1
|
1250 |
+
value: 7.893
|
1251 |
+
- type: recall_at_10
|
1252 |
+
value: 20.724999999999998
|
1253 |
+
- type: recall_at_100
|
1254 |
+
value: 42.516
|
1255 |
+
- type: recall_at_1000
|
1256 |
+
value: 65.822
|
1257 |
+
- type: recall_at_3
|
1258 |
+
value: 12.615000000000002
|
1259 |
+
- type: recall_at_5
|
1260 |
+
value: 15.482000000000001
|
1261 |
+
- task:
|
1262 |
+
type: Classification
|
1263 |
+
dataset:
|
1264 |
+
type: mteb/emotion
|
1265 |
+
name: MTEB EmotionClassification
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1269 |
+
metrics:
|
1270 |
+
- type: accuracy
|
1271 |
+
value: 51.760000000000005
|
1272 |
+
- type: f1
|
1273 |
+
value: 45.51690565701713
|
1274 |
+
- task:
|
1275 |
+
type: Retrieval
|
1276 |
+
dataset:
|
1277 |
+
type: fever
|
1278 |
+
name: MTEB FEVER
|
1279 |
+
config: default
|
1280 |
+
split: test
|
1281 |
+
revision: None
|
1282 |
+
metrics:
|
1283 |
+
- type: map_at_1
|
1284 |
+
value: 53.882
|
1285 |
+
- type: map_at_10
|
1286 |
+
value: 65.902
|
1287 |
+
- type: map_at_100
|
1288 |
+
value: 66.33
|
1289 |
+
- type: map_at_1000
|
1290 |
+
value: 66.348
|
1291 |
+
- type: map_at_3
|
1292 |
+
value: 63.75999999999999
|
1293 |
+
- type: map_at_5
|
1294 |
+
value: 65.181
|
1295 |
+
- type: mrr_at_1
|
1296 |
+
value: 58.041
|
1297 |
+
- type: mrr_at_10
|
1298 |
+
value: 70.133
|
1299 |
+
- type: mrr_at_100
|
1300 |
+
value: 70.463
|
1301 |
+
- type: mrr_at_1000
|
1302 |
+
value: 70.47
|
1303 |
+
- type: mrr_at_3
|
1304 |
+
value: 68.164
|
1305 |
+
- type: mrr_at_5
|
1306 |
+
value: 69.465
|
1307 |
+
- type: ndcg_at_1
|
1308 |
+
value: 58.041
|
1309 |
+
- type: ndcg_at_10
|
1310 |
+
value: 71.84700000000001
|
1311 |
+
- type: ndcg_at_100
|
1312 |
+
value: 73.699
|
1313 |
+
- type: ndcg_at_1000
|
1314 |
+
value: 74.06700000000001
|
1315 |
+
- type: ndcg_at_3
|
1316 |
+
value: 67.855
|
1317 |
+
- type: ndcg_at_5
|
1318 |
+
value: 70.203
|
1319 |
+
- type: precision_at_1
|
1320 |
+
value: 58.041
|
1321 |
+
- type: precision_at_10
|
1322 |
+
value: 9.427000000000001
|
1323 |
+
- type: precision_at_100
|
1324 |
+
value: 1.049
|
1325 |
+
- type: precision_at_1000
|
1326 |
+
value: 0.11
|
1327 |
+
- type: precision_at_3
|
1328 |
+
value: 27.278000000000002
|
1329 |
+
- type: precision_at_5
|
1330 |
+
value: 17.693
|
1331 |
+
- type: recall_at_1
|
1332 |
+
value: 53.882
|
1333 |
+
- type: recall_at_10
|
1334 |
+
value: 85.99
|
1335 |
+
- type: recall_at_100
|
1336 |
+
value: 94.09100000000001
|
1337 |
+
- type: recall_at_1000
|
1338 |
+
value: 96.612
|
1339 |
+
- type: recall_at_3
|
1340 |
+
value: 75.25
|
1341 |
+
- type: recall_at_5
|
1342 |
+
value: 80.997
|
1343 |
+
- task:
|
1344 |
+
type: Retrieval
|
1345 |
+
dataset:
|
1346 |
+
type: fiqa
|
1347 |
+
name: MTEB FiQA2018
|
1348 |
+
config: default
|
1349 |
+
split: test
|
1350 |
+
revision: None
|
1351 |
+
metrics:
|
1352 |
+
- type: map_at_1
|
1353 |
+
value: 19.165
|
1354 |
+
- type: map_at_10
|
1355 |
+
value: 31.845000000000002
|
1356 |
+
- type: map_at_100
|
1357 |
+
value: 33.678999999999995
|
1358 |
+
- type: map_at_1000
|
1359 |
+
value: 33.878
|
1360 |
+
- type: map_at_3
|
1361 |
+
value: 27.881
|
1362 |
+
- type: map_at_5
|
1363 |
+
value: 30.049999999999997
|
1364 |
+
- type: mrr_at_1
|
1365 |
+
value: 38.272
|
1366 |
+
- type: mrr_at_10
|
1367 |
+
value: 47.04
|
1368 |
+
- type: mrr_at_100
|
1369 |
+
value: 47.923
|
1370 |
+
- type: mrr_at_1000
|
1371 |
+
value: 47.973
|
1372 |
+
- type: mrr_at_3
|
1373 |
+
value: 44.985
|
1374 |
+
- type: mrr_at_5
|
1375 |
+
value: 46.150000000000006
|
1376 |
+
- type: ndcg_at_1
|
1377 |
+
value: 38.272
|
1378 |
+
- type: ndcg_at_10
|
1379 |
+
value: 39.177
|
1380 |
+
- type: ndcg_at_100
|
1381 |
+
value: 45.995000000000005
|
1382 |
+
- type: ndcg_at_1000
|
1383 |
+
value: 49.312
|
1384 |
+
- type: ndcg_at_3
|
1385 |
+
value: 36.135
|
1386 |
+
- type: ndcg_at_5
|
1387 |
+
value: 36.936
|
1388 |
+
- type: precision_at_1
|
1389 |
+
value: 38.272
|
1390 |
+
- type: precision_at_10
|
1391 |
+
value: 10.926
|
1392 |
+
- type: precision_at_100
|
1393 |
+
value: 1.809
|
1394 |
+
- type: precision_at_1000
|
1395 |
+
value: 0.23700000000000002
|
1396 |
+
- type: precision_at_3
|
1397 |
+
value: 24.331
|
1398 |
+
- type: precision_at_5
|
1399 |
+
value: 17.747
|
1400 |
+
- type: recall_at_1
|
1401 |
+
value: 19.165
|
1402 |
+
- type: recall_at_10
|
1403 |
+
value: 45.103
|
1404 |
+
- type: recall_at_100
|
1405 |
+
value: 70.295
|
1406 |
+
- type: recall_at_1000
|
1407 |
+
value: 90.592
|
1408 |
+
- type: recall_at_3
|
1409 |
+
value: 32.832
|
1410 |
+
- type: recall_at_5
|
1411 |
+
value: 37.905
|
1412 |
+
- task:
|
1413 |
+
type: Retrieval
|
1414 |
+
dataset:
|
1415 |
+
type: hotpotqa
|
1416 |
+
name: MTEB HotpotQA
|
1417 |
+
config: default
|
1418 |
+
split: test
|
1419 |
+
revision: None
|
1420 |
+
metrics:
|
1421 |
+
- type: map_at_1
|
1422 |
+
value: 32.397
|
1423 |
+
- type: map_at_10
|
1424 |
+
value: 44.83
|
1425 |
+
- type: map_at_100
|
1426 |
+
value: 45.716
|
1427 |
+
- type: map_at_1000
|
1428 |
+
value: 45.797
|
1429 |
+
- type: map_at_3
|
1430 |
+
value: 41.955999999999996
|
1431 |
+
- type: map_at_5
|
1432 |
+
value: 43.736999999999995
|
1433 |
+
- type: mrr_at_1
|
1434 |
+
value: 64.794
|
1435 |
+
- type: mrr_at_10
|
1436 |
+
value: 71.866
|
1437 |
+
- type: mrr_at_100
|
1438 |
+
value: 72.22
|
1439 |
+
- type: mrr_at_1000
|
1440 |
+
value: 72.238
|
1441 |
+
- type: mrr_at_3
|
1442 |
+
value: 70.416
|
1443 |
+
- type: mrr_at_5
|
1444 |
+
value: 71.304
|
1445 |
+
- type: ndcg_at_1
|
1446 |
+
value: 64.794
|
1447 |
+
- type: ndcg_at_10
|
1448 |
+
value: 54.186
|
1449 |
+
- type: ndcg_at_100
|
1450 |
+
value: 57.623000000000005
|
1451 |
+
- type: ndcg_at_1000
|
1452 |
+
value: 59.302
|
1453 |
+
- type: ndcg_at_3
|
1454 |
+
value: 49.703
|
1455 |
+
- type: ndcg_at_5
|
1456 |
+
value: 52.154999999999994
|
1457 |
+
- type: precision_at_1
|
1458 |
+
value: 64.794
|
1459 |
+
- type: precision_at_10
|
1460 |
+
value: 11.219
|
1461 |
+
- type: precision_at_100
|
1462 |
+
value: 1.394
|
1463 |
+
- type: precision_at_1000
|
1464 |
+
value: 0.16199999999999998
|
1465 |
+
- type: precision_at_3
|
1466 |
+
value: 30.767
|
1467 |
+
- type: precision_at_5
|
1468 |
+
value: 20.397000000000002
|
1469 |
+
- type: recall_at_1
|
1470 |
+
value: 32.397
|
1471 |
+
- type: recall_at_10
|
1472 |
+
value: 56.096999999999994
|
1473 |
+
- type: recall_at_100
|
1474 |
+
value: 69.696
|
1475 |
+
- type: recall_at_1000
|
1476 |
+
value: 80.88499999999999
|
1477 |
+
- type: recall_at_3
|
1478 |
+
value: 46.150999999999996
|
1479 |
+
- type: recall_at_5
|
1480 |
+
value: 50.993
|
1481 |
+
- task:
|
1482 |
+
type: Classification
|
1483 |
+
dataset:
|
1484 |
+
type: mteb/imdb
|
1485 |
+
name: MTEB ImdbClassification
|
1486 |
+
config: default
|
1487 |
+
split: test
|
1488 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1489 |
+
metrics:
|
1490 |
+
- type: accuracy
|
1491 |
+
value: 81.1744
|
1492 |
+
- type: ap
|
1493 |
+
value: 75.44973697032414
|
1494 |
+
- type: f1
|
1495 |
+
value: 81.09901117955782
|
1496 |
+
- task:
|
1497 |
+
type: Retrieval
|
1498 |
+
dataset:
|
1499 |
+
type: msmarco
|
1500 |
+
name: MTEB MSMARCO
|
1501 |
+
config: default
|
1502 |
+
split: dev
|
1503 |
+
revision: None
|
1504 |
+
metrics:
|
1505 |
+
- type: map_at_1
|
1506 |
+
value: 19.519000000000002
|
1507 |
+
- type: map_at_10
|
1508 |
+
value: 31.025000000000002
|
1509 |
+
- type: map_at_100
|
1510 |
+
value: 32.275999999999996
|
1511 |
+
- type: map_at_1000
|
1512 |
+
value: 32.329
|
1513 |
+
- type: map_at_3
|
1514 |
+
value: 27.132
|
1515 |
+
- type: map_at_5
|
1516 |
+
value: 29.415999999999997
|
1517 |
+
- type: mrr_at_1
|
1518 |
+
value: 20.115
|
1519 |
+
- type: mrr_at_10
|
1520 |
+
value: 31.569000000000003
|
1521 |
+
- type: mrr_at_100
|
1522 |
+
value: 32.768
|
1523 |
+
- type: mrr_at_1000
|
1524 |
+
value: 32.816
|
1525 |
+
- type: mrr_at_3
|
1526 |
+
value: 27.748
|
1527 |
+
- type: mrr_at_5
|
1528 |
+
value: 29.956
|
1529 |
+
- type: ndcg_at_1
|
1530 |
+
value: 20.115
|
1531 |
+
- type: ndcg_at_10
|
1532 |
+
value: 37.756
|
1533 |
+
- type: ndcg_at_100
|
1534 |
+
value: 43.858000000000004
|
1535 |
+
- type: ndcg_at_1000
|
1536 |
+
value: 45.199
|
1537 |
+
- type: ndcg_at_3
|
1538 |
+
value: 29.818
|
1539 |
+
- type: ndcg_at_5
|
1540 |
+
value: 33.875
|
1541 |
+
- type: precision_at_1
|
1542 |
+
value: 20.115
|
1543 |
+
- type: precision_at_10
|
1544 |
+
value: 6.122
|
1545 |
+
- type: precision_at_100
|
1546 |
+
value: 0.919
|
1547 |
+
- type: precision_at_1000
|
1548 |
+
value: 0.10300000000000001
|
1549 |
+
- type: precision_at_3
|
1550 |
+
value: 12.794
|
1551 |
+
- type: precision_at_5
|
1552 |
+
value: 9.731
|
1553 |
+
- type: recall_at_1
|
1554 |
+
value: 19.519000000000002
|
1555 |
+
- type: recall_at_10
|
1556 |
+
value: 58.62500000000001
|
1557 |
+
- type: recall_at_100
|
1558 |
+
value: 86.99
|
1559 |
+
- type: recall_at_1000
|
1560 |
+
value: 97.268
|
1561 |
+
- type: recall_at_3
|
1562 |
+
value: 37.002
|
1563 |
+
- type: recall_at_5
|
1564 |
+
value: 46.778
|
1565 |
+
- task:
|
1566 |
+
type: Classification
|
1567 |
+
dataset:
|
1568 |
+
type: mteb/mtop_domain
|
1569 |
+
name: MTEB MTOPDomainClassification (en)
|
1570 |
+
config: en
|
1571 |
+
split: test
|
1572 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1573 |
+
metrics:
|
1574 |
+
- type: accuracy
|
1575 |
+
value: 93.71865025079799
|
1576 |
+
- type: f1
|
1577 |
+
value: 93.38906173610519
|
1578 |
+
- task:
|
1579 |
+
type: Classification
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/mtop_intent
|
1582 |
+
name: MTEB MTOPIntentClassification (en)
|
1583 |
+
config: en
|
1584 |
+
split: test
|
1585 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1586 |
+
metrics:
|
1587 |
+
- type: accuracy
|
1588 |
+
value: 70.2576379388965
|
1589 |
+
- type: f1
|
1590 |
+
value: 49.20405830249464
|
1591 |
+
- task:
|
1592 |
+
type: Classification
|
1593 |
+
dataset:
|
1594 |
+
type: mteb/amazon_massive_intent
|
1595 |
+
name: MTEB MassiveIntentClassification (en)
|
1596 |
+
config: en
|
1597 |
+
split: test
|
1598 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1599 |
+
metrics:
|
1600 |
+
- type: accuracy
|
1601 |
+
value: 67.48486886348351
|
1602 |
+
- type: f1
|
1603 |
+
value: 64.92199176095157
|
1604 |
+
- task:
|
1605 |
+
type: Classification
|
1606 |
+
dataset:
|
1607 |
+
type: mteb/amazon_massive_scenario
|
1608 |
+
name: MTEB MassiveScenarioClassification (en)
|
1609 |
+
config: en
|
1610 |
+
split: test
|
1611 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1612 |
+
metrics:
|
1613 |
+
- type: accuracy
|
1614 |
+
value: 72.59246805648958
|
1615 |
+
- type: f1
|
1616 |
+
value: 72.1222026389164
|
1617 |
+
- task:
|
1618 |
+
type: Clustering
|
1619 |
+
dataset:
|
1620 |
+
type: mteb/medrxiv-clustering-p2p
|
1621 |
+
name: MTEB MedrxivClusteringP2P
|
1622 |
+
config: default
|
1623 |
+
split: test
|
1624 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1625 |
+
metrics:
|
1626 |
+
- type: v_measure
|
1627 |
+
value: 30.887642595096825
|
1628 |
+
- task:
|
1629 |
+
type: Clustering
|
1630 |
+
dataset:
|
1631 |
+
type: mteb/medrxiv-clustering-s2s
|
1632 |
+
name: MTEB MedrxivClusteringS2S
|
1633 |
+
config: default
|
1634 |
+
split: test
|
1635 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1636 |
+
metrics:
|
1637 |
+
- type: v_measure
|
1638 |
+
value: 28.3764418784054
|
1639 |
+
- task:
|
1640 |
+
type: Reranking
|
1641 |
+
dataset:
|
1642 |
+
type: mteb/mind_small
|
1643 |
+
name: MTEB MindSmallReranking
|
1644 |
+
config: default
|
1645 |
+
split: test
|
1646 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1647 |
+
metrics:
|
1648 |
+
- type: map
|
1649 |
+
value: 31.81544126336991
|
1650 |
+
- type: mrr
|
1651 |
+
value: 32.82666576268031
|
1652 |
+
- task:
|
1653 |
+
type: Retrieval
|
1654 |
+
dataset:
|
1655 |
+
type: nfcorpus
|
1656 |
+
name: MTEB NFCorpus
|
1657 |
+
config: default
|
1658 |
+
split: test
|
1659 |
+
revision: None
|
1660 |
+
metrics:
|
1661 |
+
- type: map_at_1
|
1662 |
+
value: 5.185
|
1663 |
+
- type: map_at_10
|
1664 |
+
value: 11.158
|
1665 |
+
- type: map_at_100
|
1666 |
+
value: 14.041
|
1667 |
+
- type: map_at_1000
|
1668 |
+
value: 15.360999999999999
|
1669 |
+
- type: map_at_3
|
1670 |
+
value: 8.417
|
1671 |
+
- type: map_at_5
|
1672 |
+
value: 9.378
|
1673 |
+
- type: mrr_at_1
|
1674 |
+
value: 44.582
|
1675 |
+
- type: mrr_at_10
|
1676 |
+
value: 53.083999999999996
|
1677 |
+
- type: mrr_at_100
|
1678 |
+
value: 53.787
|
1679 |
+
- type: mrr_at_1000
|
1680 |
+
value: 53.824000000000005
|
1681 |
+
- type: mrr_at_3
|
1682 |
+
value: 51.187000000000005
|
1683 |
+
- type: mrr_at_5
|
1684 |
+
value: 52.379
|
1685 |
+
- type: ndcg_at_1
|
1686 |
+
value: 42.57
|
1687 |
+
- type: ndcg_at_10
|
1688 |
+
value: 31.593
|
1689 |
+
- type: ndcg_at_100
|
1690 |
+
value: 29.093999999999998
|
1691 |
+
- type: ndcg_at_1000
|
1692 |
+
value: 37.909
|
1693 |
+
- type: ndcg_at_3
|
1694 |
+
value: 37.083
|
1695 |
+
- type: ndcg_at_5
|
1696 |
+
value: 34.397
|
1697 |
+
- type: precision_at_1
|
1698 |
+
value: 43.963
|
1699 |
+
- type: precision_at_10
|
1700 |
+
value: 23.498
|
1701 |
+
- type: precision_at_100
|
1702 |
+
value: 7.6160000000000005
|
1703 |
+
- type: precision_at_1000
|
1704 |
+
value: 2.032
|
1705 |
+
- type: precision_at_3
|
1706 |
+
value: 34.572
|
1707 |
+
- type: precision_at_5
|
1708 |
+
value: 29.412
|
1709 |
+
- type: recall_at_1
|
1710 |
+
value: 5.185
|
1711 |
+
- type: recall_at_10
|
1712 |
+
value: 15.234
|
1713 |
+
- type: recall_at_100
|
1714 |
+
value: 29.49
|
1715 |
+
- type: recall_at_1000
|
1716 |
+
value: 62.273999999999994
|
1717 |
+
- type: recall_at_3
|
1718 |
+
value: 9.55
|
1719 |
+
- type: recall_at_5
|
1720 |
+
value: 11.103
|
1721 |
+
- task:
|
1722 |
+
type: Retrieval
|
1723 |
+
dataset:
|
1724 |
+
type: nq
|
1725 |
+
name: MTEB NQ
|
1726 |
+
config: default
|
1727 |
+
split: test
|
1728 |
+
revision: None
|
1729 |
+
metrics:
|
1730 |
+
- type: map_at_1
|
1731 |
+
value: 23.803
|
1732 |
+
- type: map_at_10
|
1733 |
+
value: 38.183
|
1734 |
+
- type: map_at_100
|
1735 |
+
value: 39.421
|
1736 |
+
- type: map_at_1000
|
1737 |
+
value: 39.464
|
1738 |
+
- type: map_at_3
|
1739 |
+
value: 33.835
|
1740 |
+
- type: map_at_5
|
1741 |
+
value: 36.327
|
1742 |
+
- type: mrr_at_1
|
1743 |
+
value: 26.68
|
1744 |
+
- type: mrr_at_10
|
1745 |
+
value: 40.439
|
1746 |
+
- type: mrr_at_100
|
1747 |
+
value: 41.415
|
1748 |
+
- type: mrr_at_1000
|
1749 |
+
value: 41.443999999999996
|
1750 |
+
- type: mrr_at_3
|
1751 |
+
value: 36.612
|
1752 |
+
- type: mrr_at_5
|
1753 |
+
value: 38.877
|
1754 |
+
- type: ndcg_at_1
|
1755 |
+
value: 26.68
|
1756 |
+
- type: ndcg_at_10
|
1757 |
+
value: 45.882
|
1758 |
+
- type: ndcg_at_100
|
1759 |
+
value: 51.227999999999994
|
1760 |
+
- type: ndcg_at_1000
|
1761 |
+
value: 52.207
|
1762 |
+
- type: ndcg_at_3
|
1763 |
+
value: 37.511
|
1764 |
+
- type: ndcg_at_5
|
1765 |
+
value: 41.749
|
1766 |
+
- type: precision_at_1
|
1767 |
+
value: 26.68
|
1768 |
+
- type: precision_at_10
|
1769 |
+
value: 7.9750000000000005
|
1770 |
+
- type: precision_at_100
|
1771 |
+
value: 1.0959999999999999
|
1772 |
+
- type: precision_at_1000
|
1773 |
+
value: 0.11900000000000001
|
1774 |
+
- type: precision_at_3
|
1775 |
+
value: 17.449
|
1776 |
+
- type: precision_at_5
|
1777 |
+
value: 12.897
|
1778 |
+
- type: recall_at_1
|
1779 |
+
value: 23.803
|
1780 |
+
- type: recall_at_10
|
1781 |
+
value: 67.152
|
1782 |
+
- type: recall_at_100
|
1783 |
+
value: 90.522
|
1784 |
+
- type: recall_at_1000
|
1785 |
+
value: 97.743
|
1786 |
+
- type: recall_at_3
|
1787 |
+
value: 45.338
|
1788 |
+
- type: recall_at_5
|
1789 |
+
value: 55.106
|
1790 |
+
- task:
|
1791 |
+
type: Retrieval
|
1792 |
+
dataset:
|
1793 |
+
type: quora
|
1794 |
+
name: MTEB QuoraRetrieval
|
1795 |
+
config: default
|
1796 |
+
split: test
|
1797 |
+
revision: None
|
1798 |
+
metrics:
|
1799 |
+
- type: map_at_1
|
1800 |
+
value: 70.473
|
1801 |
+
- type: map_at_10
|
1802 |
+
value: 84.452
|
1803 |
+
- type: map_at_100
|
1804 |
+
value: 85.101
|
1805 |
+
- type: map_at_1000
|
1806 |
+
value: 85.115
|
1807 |
+
- type: map_at_3
|
1808 |
+
value: 81.435
|
1809 |
+
- type: map_at_5
|
1810 |
+
value: 83.338
|
1811 |
+
- type: mrr_at_1
|
1812 |
+
value: 81.19
|
1813 |
+
- type: mrr_at_10
|
1814 |
+
value: 87.324
|
1815 |
+
- type: mrr_at_100
|
1816 |
+
value: 87.434
|
1817 |
+
- type: mrr_at_1000
|
1818 |
+
value: 87.435
|
1819 |
+
- type: mrr_at_3
|
1820 |
+
value: 86.31
|
1821 |
+
- type: mrr_at_5
|
1822 |
+
value: 87.002
|
1823 |
+
- type: ndcg_at_1
|
1824 |
+
value: 81.21000000000001
|
1825 |
+
- type: ndcg_at_10
|
1826 |
+
value: 88.19
|
1827 |
+
- type: ndcg_at_100
|
1828 |
+
value: 89.44
|
1829 |
+
- type: ndcg_at_1000
|
1830 |
+
value: 89.526
|
1831 |
+
- type: ndcg_at_3
|
1832 |
+
value: 85.237
|
1833 |
+
- type: ndcg_at_5
|
1834 |
+
value: 86.892
|
1835 |
+
- type: precision_at_1
|
1836 |
+
value: 81.21000000000001
|
1837 |
+
- type: precision_at_10
|
1838 |
+
value: 13.417000000000002
|
1839 |
+
- type: precision_at_100
|
1840 |
+
value: 1.537
|
1841 |
+
- type: precision_at_1000
|
1842 |
+
value: 0.157
|
1843 |
+
- type: precision_at_3
|
1844 |
+
value: 37.31
|
1845 |
+
- type: precision_at_5
|
1846 |
+
value: 24.59
|
1847 |
+
- type: recall_at_1
|
1848 |
+
value: 70.473
|
1849 |
+
- type: recall_at_10
|
1850 |
+
value: 95.367
|
1851 |
+
- type: recall_at_100
|
1852 |
+
value: 99.616
|
1853 |
+
- type: recall_at_1000
|
1854 |
+
value: 99.996
|
1855 |
+
- type: recall_at_3
|
1856 |
+
value: 86.936
|
1857 |
+
- type: recall_at_5
|
1858 |
+
value: 91.557
|
1859 |
+
- task:
|
1860 |
+
type: Clustering
|
1861 |
+
dataset:
|
1862 |
+
type: mteb/reddit-clustering
|
1863 |
+
name: MTEB RedditClustering
|
1864 |
+
config: default
|
1865 |
+
split: test
|
1866 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1867 |
+
metrics:
|
1868 |
+
- type: v_measure
|
1869 |
+
value: 59.25776525253911
|
1870 |
+
- task:
|
1871 |
+
type: Clustering
|
1872 |
+
dataset:
|
1873 |
+
type: mteb/reddit-clustering-p2p
|
1874 |
+
name: MTEB RedditClusteringP2P
|
1875 |
+
config: default
|
1876 |
+
split: test
|
1877 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1878 |
+
metrics:
|
1879 |
+
- type: v_measure
|
1880 |
+
value: 63.22135271663078
|
1881 |
+
- task:
|
1882 |
+
type: Retrieval
|
1883 |
+
dataset:
|
1884 |
+
type: scidocs
|
1885 |
+
name: MTEB SCIDOCS
|
1886 |
+
config: default
|
1887 |
+
split: test
|
1888 |
+
revision: None
|
1889 |
+
metrics:
|
1890 |
+
- type: map_at_1
|
1891 |
+
value: 4.003
|
1892 |
+
- type: map_at_10
|
1893 |
+
value: 10.062999999999999
|
1894 |
+
- type: map_at_100
|
1895 |
+
value: 11.854000000000001
|
1896 |
+
- type: map_at_1000
|
1897 |
+
value: 12.145999999999999
|
1898 |
+
- type: map_at_3
|
1899 |
+
value: 7.242
|
1900 |
+
- type: map_at_5
|
1901 |
+
value: 8.652999999999999
|
1902 |
+
- type: mrr_at_1
|
1903 |
+
value: 19.7
|
1904 |
+
- type: mrr_at_10
|
1905 |
+
value: 29.721999999999998
|
1906 |
+
- type: mrr_at_100
|
1907 |
+
value: 30.867
|
1908 |
+
- type: mrr_at_1000
|
1909 |
+
value: 30.944
|
1910 |
+
- type: mrr_at_3
|
1911 |
+
value: 26.683
|
1912 |
+
- type: mrr_at_5
|
1913 |
+
value: 28.498
|
1914 |
+
- type: ndcg_at_1
|
1915 |
+
value: 19.7
|
1916 |
+
- type: ndcg_at_10
|
1917 |
+
value: 17.095
|
1918 |
+
- type: ndcg_at_100
|
1919 |
+
value: 24.375
|
1920 |
+
- type: ndcg_at_1000
|
1921 |
+
value: 29.831000000000003
|
1922 |
+
- type: ndcg_at_3
|
1923 |
+
value: 16.305
|
1924 |
+
- type: ndcg_at_5
|
1925 |
+
value: 14.291
|
1926 |
+
- type: precision_at_1
|
1927 |
+
value: 19.7
|
1928 |
+
- type: precision_at_10
|
1929 |
+
value: 8.799999999999999
|
1930 |
+
- type: precision_at_100
|
1931 |
+
value: 1.9349999999999998
|
1932 |
+
- type: precision_at_1000
|
1933 |
+
value: 0.32399999999999995
|
1934 |
+
- type: precision_at_3
|
1935 |
+
value: 15.2
|
1936 |
+
- type: precision_at_5
|
1937 |
+
value: 12.540000000000001
|
1938 |
+
- type: recall_at_1
|
1939 |
+
value: 4.003
|
1940 |
+
- type: recall_at_10
|
1941 |
+
value: 17.877000000000002
|
1942 |
+
- type: recall_at_100
|
1943 |
+
value: 39.217
|
1944 |
+
- type: recall_at_1000
|
1945 |
+
value: 65.862
|
1946 |
+
- type: recall_at_3
|
1947 |
+
value: 9.242
|
1948 |
+
- type: recall_at_5
|
1949 |
+
value: 12.715000000000002
|
1950 |
+
- task:
|
1951 |
+
type: STS
|
1952 |
+
dataset:
|
1953 |
+
type: mteb/sickr-sts
|
1954 |
+
name: MTEB SICK-R
|
1955 |
+
config: default
|
1956 |
+
split: test
|
1957 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1958 |
+
metrics:
|
1959 |
+
- type: cos_sim_spearman
|
1960 |
+
value: 80.25888668589654
|
1961 |
+
- task:
|
1962 |
+
type: STS
|
1963 |
+
dataset:
|
1964 |
+
type: mteb/sts12-sts
|
1965 |
+
name: MTEB STS12
|
1966 |
+
config: default
|
1967 |
+
split: test
|
1968 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1969 |
+
metrics:
|
1970 |
+
- type: cos_sim_spearman
|
1971 |
+
value: 77.02037527837669
|
1972 |
+
- task:
|
1973 |
+
type: STS
|
1974 |
+
dataset:
|
1975 |
+
type: mteb/sts13-sts
|
1976 |
+
name: MTEB STS13
|
1977 |
+
config: default
|
1978 |
+
split: test
|
1979 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1980 |
+
metrics:
|
1981 |
+
- type: cos_sim_spearman
|
1982 |
+
value: 86.58432681008449
|
1983 |
+
- task:
|
1984 |
+
type: STS
|
1985 |
+
dataset:
|
1986 |
+
type: mteb/sts14-sts
|
1987 |
+
name: MTEB STS14
|
1988 |
+
config: default
|
1989 |
+
split: test
|
1990 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
1991 |
+
metrics:
|
1992 |
+
- type: cos_sim_spearman
|
1993 |
+
value: 81.31697756099051
|
1994 |
+
- task:
|
1995 |
+
type: STS
|
1996 |
+
dataset:
|
1997 |
+
type: mteb/sts15-sts
|
1998 |
+
name: MTEB STS15
|
1999 |
+
config: default
|
2000 |
+
split: test
|
2001 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2002 |
+
metrics:
|
2003 |
+
- type: cos_sim_spearman
|
2004 |
+
value: 88.18867599667057
|
2005 |
+
- task:
|
2006 |
+
type: STS
|
2007 |
+
dataset:
|
2008 |
+
type: mteb/sts16-sts
|
2009 |
+
name: MTEB STS16
|
2010 |
+
config: default
|
2011 |
+
split: test
|
2012 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2013 |
+
metrics:
|
2014 |
+
- type: cos_sim_spearman
|
2015 |
+
value: 84.87853941747623
|
2016 |
+
- task:
|
2017 |
+
type: STS
|
2018 |
+
dataset:
|
2019 |
+
type: mteb/sts17-crosslingual-sts
|
2020 |
+
name: MTEB STS17 (en-en)
|
2021 |
+
config: en-en
|
2022 |
+
split: test
|
2023 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2024 |
+
metrics:
|
2025 |
+
- type: cos_sim_spearman
|
2026 |
+
value: 89.46479925383916
|
2027 |
+
- task:
|
2028 |
+
type: STS
|
2029 |
+
dataset:
|
2030 |
+
type: mteb/sts22-crosslingual-sts
|
2031 |
+
name: MTEB STS22 (en)
|
2032 |
+
config: en
|
2033 |
+
split: test
|
2034 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2035 |
+
metrics:
|
2036 |
+
- type: cos_sim_spearman
|
2037 |
+
value: 66.45272113649146
|
2038 |
+
- task:
|
2039 |
+
type: STS
|
2040 |
+
dataset:
|
2041 |
+
type: mteb/stsbenchmark-sts
|
2042 |
+
name: MTEB STSBenchmark
|
2043 |
+
config: default
|
2044 |
+
split: test
|
2045 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2046 |
+
metrics:
|
2047 |
+
- type: cos_sim_spearman
|
2048 |
+
value: 86.43357313527851
|
2049 |
+
- task:
|
2050 |
+
type: Reranking
|
2051 |
+
dataset:
|
2052 |
+
type: mteb/scidocs-reranking
|
2053 |
+
name: MTEB SciDocsRR
|
2054 |
+
config: default
|
2055 |
+
split: test
|
2056 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2057 |
+
metrics:
|
2058 |
+
- type: map
|
2059 |
+
value: 78.82761687254882
|
2060 |
+
- type: mrr
|
2061 |
+
value: 93.46223674655047
|
2062 |
+
- task:
|
2063 |
+
type: Retrieval
|
2064 |
+
dataset:
|
2065 |
+
type: scifact
|
2066 |
+
name: MTEB SciFact
|
2067 |
+
config: default
|
2068 |
+
split: test
|
2069 |
+
revision: None
|
2070 |
+
metrics:
|
2071 |
+
- type: map_at_1
|
2072 |
+
value: 44.583
|
2073 |
+
- type: map_at_10
|
2074 |
+
value: 52.978
|
2075 |
+
- type: map_at_100
|
2076 |
+
value: 53.803
|
2077 |
+
- type: map_at_1000
|
2078 |
+
value: 53.839999999999996
|
2079 |
+
- type: map_at_3
|
2080 |
+
value: 50.03300000000001
|
2081 |
+
- type: map_at_5
|
2082 |
+
value: 51.939
|
2083 |
+
- type: mrr_at_1
|
2084 |
+
value: 47.0
|
2085 |
+
- type: mrr_at_10
|
2086 |
+
value: 54.730000000000004
|
2087 |
+
- type: mrr_at_100
|
2088 |
+
value: 55.31399999999999
|
2089 |
+
- type: mrr_at_1000
|
2090 |
+
value: 55.346
|
2091 |
+
- type: mrr_at_3
|
2092 |
+
value: 52.0
|
2093 |
+
- type: mrr_at_5
|
2094 |
+
value: 53.783
|
2095 |
+
- type: ndcg_at_1
|
2096 |
+
value: 47.0
|
2097 |
+
- type: ndcg_at_10
|
2098 |
+
value: 57.82899999999999
|
2099 |
+
- type: ndcg_at_100
|
2100 |
+
value: 61.49400000000001
|
2101 |
+
- type: ndcg_at_1000
|
2102 |
+
value: 62.676
|
2103 |
+
- type: ndcg_at_3
|
2104 |
+
value: 52.373000000000005
|
2105 |
+
- type: ndcg_at_5
|
2106 |
+
value: 55.481
|
2107 |
+
- type: precision_at_1
|
2108 |
+
value: 47.0
|
2109 |
+
- type: precision_at_10
|
2110 |
+
value: 7.867
|
2111 |
+
- type: precision_at_100
|
2112 |
+
value: 0.997
|
2113 |
+
- type: precision_at_1000
|
2114 |
+
value: 0.11
|
2115 |
+
- type: precision_at_3
|
2116 |
+
value: 20.556
|
2117 |
+
- type: precision_at_5
|
2118 |
+
value: 14.066999999999998
|
2119 |
+
- type: recall_at_1
|
2120 |
+
value: 44.583
|
2121 |
+
- type: recall_at_10
|
2122 |
+
value: 71.172
|
2123 |
+
- type: recall_at_100
|
2124 |
+
value: 87.7
|
2125 |
+
- type: recall_at_1000
|
2126 |
+
value: 97.333
|
2127 |
+
- type: recall_at_3
|
2128 |
+
value: 56.511
|
2129 |
+
- type: recall_at_5
|
2130 |
+
value: 64.206
|
2131 |
+
- task:
|
2132 |
+
type: PairClassification
|
2133 |
+
dataset:
|
2134 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2135 |
+
name: MTEB SprintDuplicateQuestions
|
2136 |
+
config: default
|
2137 |
+
split: test
|
2138 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2139 |
+
metrics:
|
2140 |
+
- type: cos_sim_accuracy
|
2141 |
+
value: 99.66237623762376
|
2142 |
+
- type: cos_sim_ap
|
2143 |
+
value: 90.35465126226322
|
2144 |
+
- type: cos_sim_f1
|
2145 |
+
value: 82.44575936883628
|
2146 |
+
- type: cos_sim_precision
|
2147 |
+
value: 81.32295719844358
|
2148 |
+
- type: cos_sim_recall
|
2149 |
+
value: 83.6
|
2150 |
+
- type: dot_accuracy
|
2151 |
+
value: 99.66237623762376
|
2152 |
+
- type: dot_ap
|
2153 |
+
value: 90.35464287920453
|
2154 |
+
- type: dot_f1
|
2155 |
+
value: 82.44575936883628
|
2156 |
+
- type: dot_precision
|
2157 |
+
value: 81.32295719844358
|
2158 |
+
- type: dot_recall
|
2159 |
+
value: 83.6
|
2160 |
+
- type: euclidean_accuracy
|
2161 |
+
value: 99.66237623762376
|
2162 |
+
- type: euclidean_ap
|
2163 |
+
value: 90.3546512622632
|
2164 |
+
- type: euclidean_f1
|
2165 |
+
value: 82.44575936883628
|
2166 |
+
- type: euclidean_precision
|
2167 |
+
value: 81.32295719844358
|
2168 |
+
- type: euclidean_recall
|
2169 |
+
value: 83.6
|
2170 |
+
- type: manhattan_accuracy
|
2171 |
+
value: 99.65940594059406
|
2172 |
+
- type: manhattan_ap
|
2173 |
+
value: 90.29220174849843
|
2174 |
+
- type: manhattan_f1
|
2175 |
+
value: 82.4987605354487
|
2176 |
+
- type: manhattan_precision
|
2177 |
+
value: 81.80924287118977
|
2178 |
+
- type: manhattan_recall
|
2179 |
+
value: 83.2
|
2180 |
+
- type: max_accuracy
|
2181 |
+
value: 99.66237623762376
|
2182 |
+
- type: max_ap
|
2183 |
+
value: 90.35465126226322
|
2184 |
+
- type: max_f1
|
2185 |
+
value: 82.4987605354487
|
2186 |
+
- task:
|
2187 |
+
type: Clustering
|
2188 |
+
dataset:
|
2189 |
+
type: mteb/stackexchange-clustering
|
2190 |
+
name: MTEB StackExchangeClustering
|
2191 |
+
config: default
|
2192 |
+
split: test
|
2193 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2194 |
+
metrics:
|
2195 |
+
- type: v_measure
|
2196 |
+
value: 65.0394225901397
|
2197 |
+
- task:
|
2198 |
+
type: Clustering
|
2199 |
+
dataset:
|
2200 |
+
type: mteb/stackexchange-clustering-p2p
|
2201 |
+
name: MTEB StackExchangeClusteringP2P
|
2202 |
+
config: default
|
2203 |
+
split: test
|
2204 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2205 |
+
metrics:
|
2206 |
+
- type: v_measure
|
2207 |
+
value: 35.27954189859326
|
2208 |
+
- task:
|
2209 |
+
type: Reranking
|
2210 |
+
dataset:
|
2211 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2212 |
+
name: MTEB StackOverflowDupQuestions
|
2213 |
+
config: default
|
2214 |
+
split: test
|
2215 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2216 |
+
metrics:
|
2217 |
+
- type: map
|
2218 |
+
value: 50.99055979974896
|
2219 |
+
- type: mrr
|
2220 |
+
value: 51.82745257193787
|
2221 |
+
- task:
|
2222 |
+
type: Summarization
|
2223 |
+
dataset:
|
2224 |
+
type: mteb/summeval
|
2225 |
+
name: MTEB SummEval
|
2226 |
+
config: default
|
2227 |
+
split: test
|
2228 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2229 |
+
metrics:
|
2230 |
+
- type: cos_sim_pearson
|
2231 |
+
value: 30.21655465344237
|
2232 |
+
- type: cos_sim_spearman
|
2233 |
+
value: 29.853205339630172
|
2234 |
+
- type: dot_pearson
|
2235 |
+
value: 30.216540628083564
|
2236 |
+
- type: dot_spearman
|
2237 |
+
value: 29.868978894753027
|
2238 |
+
- task:
|
2239 |
+
type: Retrieval
|
2240 |
+
dataset:
|
2241 |
+
type: trec-covid
|
2242 |
+
name: MTEB TRECCOVID
|
2243 |
+
config: default
|
2244 |
+
split: test
|
2245 |
+
revision: None
|
2246 |
+
metrics:
|
2247 |
+
- type: map_at_1
|
2248 |
+
value: 0.2
|
2249 |
+
- type: map_at_10
|
2250 |
+
value: 1.398
|
2251 |
+
- type: map_at_100
|
2252 |
+
value: 7.406
|
2253 |
+
- type: map_at_1000
|
2254 |
+
value: 18.401
|
2255 |
+
- type: map_at_3
|
2256 |
+
value: 0.479
|
2257 |
+
- type: map_at_5
|
2258 |
+
value: 0.772
|
2259 |
+
- type: mrr_at_1
|
2260 |
+
value: 70.0
|
2261 |
+
- type: mrr_at_10
|
2262 |
+
value: 79.25999999999999
|
2263 |
+
- type: mrr_at_100
|
2264 |
+
value: 79.25999999999999
|
2265 |
+
- type: mrr_at_1000
|
2266 |
+
value: 79.25999999999999
|
2267 |
+
- type: mrr_at_3
|
2268 |
+
value: 77.333
|
2269 |
+
- type: mrr_at_5
|
2270 |
+
value: 78.133
|
2271 |
+
- type: ndcg_at_1
|
2272 |
+
value: 63.0
|
2273 |
+
- type: ndcg_at_10
|
2274 |
+
value: 58.548
|
2275 |
+
- type: ndcg_at_100
|
2276 |
+
value: 45.216
|
2277 |
+
- type: ndcg_at_1000
|
2278 |
+
value: 41.149
|
2279 |
+
- type: ndcg_at_3
|
2280 |
+
value: 60.641999999999996
|
2281 |
+
- type: ndcg_at_5
|
2282 |
+
value: 61.135
|
2283 |
+
- type: precision_at_1
|
2284 |
+
value: 70.0
|
2285 |
+
- type: precision_at_10
|
2286 |
+
value: 64.0
|
2287 |
+
- type: precision_at_100
|
2288 |
+
value: 46.92
|
2289 |
+
- type: precision_at_1000
|
2290 |
+
value: 18.642
|
2291 |
+
- type: precision_at_3
|
2292 |
+
value: 64.667
|
2293 |
+
- type: precision_at_5
|
2294 |
+
value: 66.4
|
2295 |
+
- type: recall_at_1
|
2296 |
+
value: 0.2
|
2297 |
+
- type: recall_at_10
|
2298 |
+
value: 1.6729999999999998
|
2299 |
+
- type: recall_at_100
|
2300 |
+
value: 10.856
|
2301 |
+
- type: recall_at_1000
|
2302 |
+
value: 38.964999999999996
|
2303 |
+
- type: recall_at_3
|
2304 |
+
value: 0.504
|
2305 |
+
- type: recall_at_5
|
2306 |
+
value: 0.852
|
2307 |
+
- task:
|
2308 |
+
type: Retrieval
|
2309 |
+
dataset:
|
2310 |
+
type: webis-touche2020
|
2311 |
+
name: MTEB Touche2020
|
2312 |
+
config: default
|
2313 |
+
split: test
|
2314 |
+
revision: None
|
2315 |
+
metrics:
|
2316 |
+
- type: map_at_1
|
2317 |
+
value: 1.6629999999999998
|
2318 |
+
- type: map_at_10
|
2319 |
+
value: 8.601
|
2320 |
+
- type: map_at_100
|
2321 |
+
value: 14.354
|
2322 |
+
- type: map_at_1000
|
2323 |
+
value: 15.927
|
2324 |
+
- type: map_at_3
|
2325 |
+
value: 4.1930000000000005
|
2326 |
+
- type: map_at_5
|
2327 |
+
value: 5.655
|
2328 |
+
- type: mrr_at_1
|
2329 |
+
value: 18.367
|
2330 |
+
- type: mrr_at_10
|
2331 |
+
value: 34.466
|
2332 |
+
- type: mrr_at_100
|
2333 |
+
value: 35.235
|
2334 |
+
- type: mrr_at_1000
|
2335 |
+
value: 35.27
|
2336 |
+
- type: mrr_at_3
|
2337 |
+
value: 28.571
|
2338 |
+
- type: mrr_at_5
|
2339 |
+
value: 31.531
|
2340 |
+
- type: ndcg_at_1
|
2341 |
+
value: 14.285999999999998
|
2342 |
+
- type: ndcg_at_10
|
2343 |
+
value: 20.374
|
2344 |
+
- type: ndcg_at_100
|
2345 |
+
value: 33.532000000000004
|
2346 |
+
- type: ndcg_at_1000
|
2347 |
+
value: 45.561
|
2348 |
+
- type: ndcg_at_3
|
2349 |
+
value: 18.442
|
2350 |
+
- type: ndcg_at_5
|
2351 |
+
value: 18.076
|
2352 |
+
- type: precision_at_1
|
2353 |
+
value: 18.367
|
2354 |
+
- type: precision_at_10
|
2355 |
+
value: 20.204
|
2356 |
+
- type: precision_at_100
|
2357 |
+
value: 7.489999999999999
|
2358 |
+
- type: precision_at_1000
|
2359 |
+
value: 1.5630000000000002
|
2360 |
+
- type: precision_at_3
|
2361 |
+
value: 21.769
|
2362 |
+
- type: precision_at_5
|
2363 |
+
value: 20.408
|
2364 |
+
- type: recall_at_1
|
2365 |
+
value: 1.6629999999999998
|
2366 |
+
- type: recall_at_10
|
2367 |
+
value: 15.549
|
2368 |
+
- type: recall_at_100
|
2369 |
+
value: 47.497
|
2370 |
+
- type: recall_at_1000
|
2371 |
+
value: 84.524
|
2372 |
+
- type: recall_at_3
|
2373 |
+
value: 5.289
|
2374 |
+
- type: recall_at_5
|
2375 |
+
value: 8.035
|
2376 |
+
- task:
|
2377 |
+
type: Classification
|
2378 |
+
dataset:
|
2379 |
+
type: mteb/toxic_conversations_50k
|
2380 |
+
name: MTEB ToxicConversationsClassification
|
2381 |
+
config: default
|
2382 |
+
split: test
|
2383 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2384 |
+
metrics:
|
2385 |
+
- type: accuracy
|
2386 |
+
value: 71.8194
|
2387 |
+
- type: ap
|
2388 |
+
value: 14.447702451658554
|
2389 |
+
- type: f1
|
2390 |
+
value: 55.13659412856185
|
2391 |
+
- task:
|
2392 |
+
type: Classification
|
2393 |
+
dataset:
|
2394 |
+
type: mteb/tweet_sentiment_extraction
|
2395 |
+
name: MTEB TweetSentimentExtractionClassification
|
2396 |
+
config: default
|
2397 |
+
split: test
|
2398 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2399 |
+
metrics:
|
2400 |
+
- type: accuracy
|
2401 |
+
value: 63.310696095076416
|
2402 |
+
- type: f1
|
2403 |
+
value: 63.360434851097814
|
2404 |
+
- task:
|
2405 |
+
type: Clustering
|
2406 |
+
dataset:
|
2407 |
+
type: mteb/twentynewsgroups-clustering
|
2408 |
+
name: MTEB TwentyNewsgroupsClustering
|
2409 |
+
config: default
|
2410 |
+
split: test
|
2411 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2412 |
+
metrics:
|
2413 |
+
- type: v_measure
|
2414 |
+
value: 51.30677907335145
|
2415 |
+
- task:
|
2416 |
+
type: PairClassification
|
2417 |
+
dataset:
|
2418 |
+
type: mteb/twittersemeval2015-pairclassification
|
2419 |
+
name: MTEB TwitterSemEval2015
|
2420 |
+
config: default
|
2421 |
+
split: test
|
2422 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2423 |
+
metrics:
|
2424 |
+
- type: cos_sim_accuracy
|
2425 |
+
value: 86.12386004649221
|
2426 |
+
- type: cos_sim_ap
|
2427 |
+
value: 73.99096426215495
|
2428 |
+
- type: cos_sim_f1
|
2429 |
+
value: 68.18416968442834
|
2430 |
+
- type: cos_sim_precision
|
2431 |
+
value: 66.86960933536275
|
2432 |
+
- type: cos_sim_recall
|
2433 |
+
value: 69.55145118733509
|
2434 |
+
- type: dot_accuracy
|
2435 |
+
value: 86.12386004649221
|
2436 |
+
- type: dot_ap
|
2437 |
+
value: 73.99096813038672
|
2438 |
+
- type: dot_f1
|
2439 |
+
value: 68.18416968442834
|
2440 |
+
- type: dot_precision
|
2441 |
+
value: 66.86960933536275
|
2442 |
+
- type: dot_recall
|
2443 |
+
value: 69.55145118733509
|
2444 |
+
- type: euclidean_accuracy
|
2445 |
+
value: 86.12386004649221
|
2446 |
+
- type: euclidean_ap
|
2447 |
+
value: 73.99095984980165
|
2448 |
+
- type: euclidean_f1
|
2449 |
+
value: 68.18416968442834
|
2450 |
+
- type: euclidean_precision
|
2451 |
+
value: 66.86960933536275
|
2452 |
+
- type: euclidean_recall
|
2453 |
+
value: 69.55145118733509
|
2454 |
+
- type: manhattan_accuracy
|
2455 |
+
value: 86.09405734040651
|
2456 |
+
- type: manhattan_ap
|
2457 |
+
value: 73.96825745608601
|
2458 |
+
- type: manhattan_f1
|
2459 |
+
value: 68.13888179729383
|
2460 |
+
- type: manhattan_precision
|
2461 |
+
value: 65.99901088031652
|
2462 |
+
- type: manhattan_recall
|
2463 |
+
value: 70.42216358839049
|
2464 |
+
- type: max_accuracy
|
2465 |
+
value: 86.12386004649221
|
2466 |
+
- type: max_ap
|
2467 |
+
value: 73.99096813038672
|
2468 |
+
- type: max_f1
|
2469 |
+
value: 68.18416968442834
|
2470 |
+
- task:
|
2471 |
+
type: PairClassification
|
2472 |
+
dataset:
|
2473 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2474 |
+
name: MTEB TwitterURLCorpus
|
2475 |
+
config: default
|
2476 |
+
split: test
|
2477 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2478 |
+
metrics:
|
2479 |
+
- type: cos_sim_accuracy
|
2480 |
+
value: 88.99367407924865
|
2481 |
+
- type: cos_sim_ap
|
2482 |
+
value: 86.19720829843081
|
2483 |
+
- type: cos_sim_f1
|
2484 |
+
value: 78.39889075384951
|
2485 |
+
- type: cos_sim_precision
|
2486 |
+
value: 74.5110278818144
|
2487 |
+
- type: cos_sim_recall
|
2488 |
+
value: 82.71481367416075
|
2489 |
+
- type: dot_accuracy
|
2490 |
+
value: 88.99367407924865
|
2491 |
+
- type: dot_ap
|
2492 |
+
value: 86.19718471454047
|
2493 |
+
- type: dot_f1
|
2494 |
+
value: 78.39889075384951
|
2495 |
+
- type: dot_precision
|
2496 |
+
value: 74.5110278818144
|
2497 |
+
- type: dot_recall
|
2498 |
+
value: 82.71481367416075
|
2499 |
+
- type: euclidean_accuracy
|
2500 |
+
value: 88.99367407924865
|
2501 |
+
- type: euclidean_ap
|
2502 |
+
value: 86.1972021422436
|
2503 |
+
- type: euclidean_f1
|
2504 |
+
value: 78.39889075384951
|
2505 |
+
- type: euclidean_precision
|
2506 |
+
value: 74.5110278818144
|
2507 |
+
- type: euclidean_recall
|
2508 |
+
value: 82.71481367416075
|
2509 |
+
- type: manhattan_accuracy
|
2510 |
+
value: 88.95680521597392
|
2511 |
+
- type: manhattan_ap
|
2512 |
+
value: 86.16659921351506
|
2513 |
+
- type: manhattan_f1
|
2514 |
+
value: 78.39125971550081
|
2515 |
+
- type: manhattan_precision
|
2516 |
+
value: 74.82502799552073
|
2517 |
+
- type: manhattan_recall
|
2518 |
+
value: 82.31444410224823
|
2519 |
+
- type: max_accuracy
|
2520 |
+
value: 88.99367407924865
|
2521 |
+
- type: max_ap
|
2522 |
+
value: 86.19720829843081
|
2523 |
+
- type: max_f1
|
2524 |
+
value: 78.39889075384951
|
2525 |
+
---
|
2526 |
+
|
2527 |
+
# hkunlp/instructor-base
|
2528 |
+
We introduce **Instructor**👨🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨 achieves sota on 70 diverse embedding tasks!
|
2529 |
+
The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)!
|
2530 |
+
|
2531 |
+
**************************** **Updates** ****************************
|
2532 |
+
|
2533 |
+
* 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-base) trained with hard negatives, which gives better performance.
|
2534 |
+
* 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-base) and [project page](https://instructor-embedding.github.io/)! Check them out!
|
2535 |
+
|
2536 |
+
## Quick start
|
2537 |
+
<hr />
|
2538 |
+
|
2539 |
+
## Installation
|
2540 |
+
```bash
|
2541 |
+
pip install InstructorEmbedding
|
2542 |
+
```
|
2543 |
+
|
2544 |
+
## Compute your customized embeddings
|
2545 |
+
Then you can use the model like this to calculate domain-specific and task-aware embeddings:
|
2546 |
+
```python
|
2547 |
+
from InstructorEmbedding import INSTRUCTOR
|
2548 |
+
model = INSTRUCTOR('hkunlp/instructor-base')
|
2549 |
+
sentence = "3D ActionSLAM: wearable person tracking in multi-floor environments"
|
2550 |
+
instruction = "Represent the Science title:"
|
2551 |
+
embeddings = model.encode([[instruction,sentence]])
|
2552 |
+
print(embeddings)
|
2553 |
+
```
|
2554 |
+
|
2555 |
+
## Use cases
|
2556 |
+
<hr />
|
2557 |
+
|
2558 |
+
## Calculate embeddings for your customized texts
|
2559 |
+
If you want to calculate customized embeddings for specific sentences, you may follow the unified template to write instructions:
|
2560 |
+
|
2561 |
+
Represent the `domain` `text_type` for `task_objective`:
|
2562 |
+
* `domain` is optional, and it specifies the domain of the text, e.g., science, finance, medicine, etc.
|
2563 |
+
* `text_type` is required, and it specifies the encoding unit, e.g., sentence, document, paragraph, etc.
|
2564 |
+
* `task_objective` is optional, and it specifies the objective of embedding, e.g., retrieve a document, classify the sentence, etc.
|
2565 |
+
|
2566 |
+
## Calculate Sentence similarities
|
2567 |
+
You can further use the model to compute similarities between two groups of sentences, with **customized embeddings**.
|
2568 |
+
```python
|
2569 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
2570 |
+
sentences_a = [['Represent the Science sentence: ','Parton energy loss in QCD matter'],
|
2571 |
+
['Represent the Financial statement: ','The Federal Reserve on Wednesday raised its benchmark interest rate.']]
|
2572 |
+
sentences_b = [['Represent the Science sentence: ','The Chiral Phase Transition in Dissipative Dynamics'],
|
2573 |
+
['Represent the Financial statement: ','The funds rose less than 0.5 per cent on Friday']]
|
2574 |
+
embeddings_a = model.encode(sentences_a)
|
2575 |
+
embeddings_b = model.encode(sentences_b)
|
2576 |
+
similarities = cosine_similarity(embeddings_a,embeddings_b)
|
2577 |
+
print(similarities)
|
2578 |
+
```
|
2579 |
+
|
2580 |
+
## Information Retrieval
|
2581 |
+
You can also use **customized embeddings** for information retrieval.
|
2582 |
+
```python
|
2583 |
+
import numpy as np
|
2584 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
2585 |
+
query = [['Represent the Wikipedia question for retrieving supporting documents: ','where is the food stored in a yam plant']]
|
2586 |
+
corpus = [['Represent the Wikipedia document for retrieval: ','Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that the term "mixed economies" more precisely describes most contemporary economies, due to their containing both private-owned and state-owned enterprises. In capitalism, prices determine the demand-supply scale. For example, higher demand for certain goods and services lead to higher prices and lower demand for certain goods lead to lower prices.'],
|
2587 |
+
['Represent the Wikipedia document for retrieval: ',"The disparate impact theory is especially controversial under the Fair Housing Act because the Act regulates many activities relating to housing, insurance, and mortgage loans—and some scholars have argued that the theory's use under the Fair Housing Act, combined with extensions of the Community Reinvestment Act, contributed to rise of sub-prime lending and the crash of the U.S. housing market and ensuing global economic recession"],
|
2588 |
+
['Represent the Wikipedia document for retrieval: ','Disparate impact in United States labor law refers to practices in employment, housing, and other areas that adversely affect one group of people of a protected characteristic more than another, even though rules applied by employers or landlords are formally neutral. Although the protected classes vary by statute, most federal civil rights laws protect based on race, color, religion, national origin, and sex as protected traits, and some laws include disability status and other traits as well.']]
|
2589 |
+
query_embeddings = model.encode(query)
|
2590 |
+
corpus_embeddings = model.encode(corpus)
|
2591 |
+
similarities = cosine_similarity(query_embeddings,corpus_embeddings)
|
2592 |
+
retrieved_doc_id = np.argmax(similarities)
|
2593 |
+
print(retrieved_doc_id)
|
2594 |
+
```
|
2595 |
+
|
2596 |
+
## Clustering
|
2597 |
+
Use **customized embeddings** for clustering texts in groups.
|
2598 |
+
```python
|
2599 |
+
import sklearn.cluster
|
2600 |
+
sentences = [['Represent the Medicine sentence for clustering: ','Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity'],
|
2601 |
+
['Represent the Medicine sentence for clustering: ','Comparison of Atmospheric Neutrino Flux Calculations at Low Energies'],
|
2602 |
+
['Represent the Medicine sentence for clustering: ','Fermion Bags in the Massive Gross-Neveu Model'],
|
2603 |
+
['Represent the Medicine sentence for clustering: ',"QCD corrections to Associated t-tbar-H production at the Tevatron"],
|
2604 |
+
['Represent the Medicine sentence for clustering: ','A New Analysis of the R Measurements: Resonance Parameters of the Higher, Vector States of Charmonium']]
|
2605 |
+
embeddings = model.encode(sentences)
|
2606 |
+
clustering_model = sklearn.cluster.MiniBatchKMeans(n_clusters=2)
|
2607 |
+
clustering_model.fit(embeddings)
|
2608 |
+
cluster_assignment = clustering_model.labels_
|
2609 |
+
print(cluster_assignment)
|
2610 |
+
```
|
models/hkunlp_instructor-base/config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/scratch/acd14245px/metatrain_models/enhanced_large/0103_base_fever_40000/checkpoint-200/",
|
3 |
+
"architectures": [
|
4 |
+
"T5EncoderModel"
|
5 |
+
],
|
6 |
+
"d_ff": 3072,
|
7 |
+
"d_kv": 64,
|
8 |
+
"d_model": 768,
|
9 |
+
"decoder_start_token_id": 0,
|
10 |
+
"dense_act_fn": "relu",
|
11 |
+
"dropout_rate": 0.1,
|
12 |
+
"eos_token_id": 1,
|
13 |
+
"feed_forward_proj": "relu",
|
14 |
+
"initializer_factor": 1.0,
|
15 |
+
"is_encoder_decoder": true,
|
16 |
+
"is_gated_act": false,
|
17 |
+
"layer_norm_epsilon": 1e-06,
|
18 |
+
"model_type": "t5",
|
19 |
+
"n_positions": 512,
|
20 |
+
"num_decoder_layers": 12,
|
21 |
+
"num_heads": 12,
|
22 |
+
"num_layers": 12,
|
23 |
+
"output_past": true,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"relative_attention_max_distance": 128,
|
26 |
+
"relative_attention_num_buckets": 32,
|
27 |
+
"task_specific_params": {
|
28 |
+
"summarization": {
|
29 |
+
"early_stopping": true,
|
30 |
+
"length_penalty": 2.0,
|
31 |
+
"max_length": 200,
|
32 |
+
"min_length": 30,
|
33 |
+
"no_repeat_ngram_size": 3,
|
34 |
+
"num_beams": 4,
|
35 |
+
"prefix": "summarize: "
|
36 |
+
},
|
37 |
+
"translation_en_to_de": {
|
38 |
+
"early_stopping": true,
|
39 |
+
"max_length": 300,
|
40 |
+
"num_beams": 4,
|
41 |
+
"prefix": "translate English to German: "
|
42 |
+
},
|
43 |
+
"translation_en_to_fr": {
|
44 |
+
"early_stopping": true,
|
45 |
+
"max_length": 300,
|
46 |
+
"num_beams": 4,
|
47 |
+
"prefix": "translate English to French: "
|
48 |
+
},
|
49 |
+
"translation_en_to_ro": {
|
50 |
+
"early_stopping": true,
|
51 |
+
"max_length": 300,
|
52 |
+
"num_beams": 4,
|
53 |
+
"prefix": "translate English to Romanian: "
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"torch_dtype": "float32",
|
57 |
+
"transformers_version": "4.20.0.dev0",
|
58 |
+
"use_cache": true,
|
59 |
+
"vocab_size": 32128
|
60 |
+
}
|
models/hkunlp_instructor-base/config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.0",
|
4 |
+
"transformers": "4.7.0",
|
5 |
+
"pytorch": "1.9.0+cu102"
|
6 |
+
}
|
7 |
+
}
|
models/hkunlp_instructor-base/modules.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"idx": 3,
|
22 |
+
"name": "3",
|
23 |
+
"path": "3_Normalize",
|
24 |
+
"type": "sentence_transformers.models.Normalize"
|
25 |
+
}
|
26 |
+
]
|
models/hkunlp_instructor-base/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbb27fdef368c06ce639fd65d301e8488e7be742eb6ac1ff6177d1de853c08a8
|
3 |
+
size 438546812
|
models/hkunlp_instructor-base/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
models/hkunlp_instructor-base/special_tokens_map.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": "</s>",
|
105 |
+
"pad_token": "<pad>",
|
106 |
+
"unk_token": "<unk>"
|
107 |
+
}
|
models/hkunlp_instructor-base/spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
3 |
+
size 791656
|
models/hkunlp_instructor-base/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
models/hkunlp_instructor-base/tokenizer_config.json
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<extra_id_0>",
|
4 |
+
"<extra_id_1>",
|
5 |
+
"<extra_id_2>",
|
6 |
+
"<extra_id_3>",
|
7 |
+
"<extra_id_4>",
|
8 |
+
"<extra_id_5>",
|
9 |
+
"<extra_id_6>",
|
10 |
+
"<extra_id_7>",
|
11 |
+
"<extra_id_8>",
|
12 |
+
"<extra_id_9>",
|
13 |
+
"<extra_id_10>",
|
14 |
+
"<extra_id_11>",
|
15 |
+
"<extra_id_12>",
|
16 |
+
"<extra_id_13>",
|
17 |
+
"<extra_id_14>",
|
18 |
+
"<extra_id_15>",
|
19 |
+
"<extra_id_16>",
|
20 |
+
"<extra_id_17>",
|
21 |
+
"<extra_id_18>",
|
22 |
+
"<extra_id_19>",
|
23 |
+
"<extra_id_20>",
|
24 |
+
"<extra_id_21>",
|
25 |
+
"<extra_id_22>",
|
26 |
+
"<extra_id_23>",
|
27 |
+
"<extra_id_24>",
|
28 |
+
"<extra_id_25>",
|
29 |
+
"<extra_id_26>",
|
30 |
+
"<extra_id_27>",
|
31 |
+
"<extra_id_28>",
|
32 |
+
"<extra_id_29>",
|
33 |
+
"<extra_id_30>",
|
34 |
+
"<extra_id_31>",
|
35 |
+
"<extra_id_32>",
|
36 |
+
"<extra_id_33>",
|
37 |
+
"<extra_id_34>",
|
38 |
+
"<extra_id_35>",
|
39 |
+
"<extra_id_36>",
|
40 |
+
"<extra_id_37>",
|
41 |
+
"<extra_id_38>",
|
42 |
+
"<extra_id_39>",
|
43 |
+
"<extra_id_40>",
|
44 |
+
"<extra_id_41>",
|
45 |
+
"<extra_id_42>",
|
46 |
+
"<extra_id_43>",
|
47 |
+
"<extra_id_44>",
|
48 |
+
"<extra_id_45>",
|
49 |
+
"<extra_id_46>",
|
50 |
+
"<extra_id_47>",
|
51 |
+
"<extra_id_48>",
|
52 |
+
"<extra_id_49>",
|
53 |
+
"<extra_id_50>",
|
54 |
+
"<extra_id_51>",
|
55 |
+
"<extra_id_52>",
|
56 |
+
"<extra_id_53>",
|
57 |
+
"<extra_id_54>",
|
58 |
+
"<extra_id_55>",
|
59 |
+
"<extra_id_56>",
|
60 |
+
"<extra_id_57>",
|
61 |
+
"<extra_id_58>",
|
62 |
+
"<extra_id_59>",
|
63 |
+
"<extra_id_60>",
|
64 |
+
"<extra_id_61>",
|
65 |
+
"<extra_id_62>",
|
66 |
+
"<extra_id_63>",
|
67 |
+
"<extra_id_64>",
|
68 |
+
"<extra_id_65>",
|
69 |
+
"<extra_id_66>",
|
70 |
+
"<extra_id_67>",
|
71 |
+
"<extra_id_68>",
|
72 |
+
"<extra_id_69>",
|
73 |
+
"<extra_id_70>",
|
74 |
+
"<extra_id_71>",
|
75 |
+
"<extra_id_72>",
|
76 |
+
"<extra_id_73>",
|
77 |
+
"<extra_id_74>",
|
78 |
+
"<extra_id_75>",
|
79 |
+
"<extra_id_76>",
|
80 |
+
"<extra_id_77>",
|
81 |
+
"<extra_id_78>",
|
82 |
+
"<extra_id_79>",
|
83 |
+
"<extra_id_80>",
|
84 |
+
"<extra_id_81>",
|
85 |
+
"<extra_id_82>",
|
86 |
+
"<extra_id_83>",
|
87 |
+
"<extra_id_84>",
|
88 |
+
"<extra_id_85>",
|
89 |
+
"<extra_id_86>",
|
90 |
+
"<extra_id_87>",
|
91 |
+
"<extra_id_88>",
|
92 |
+
"<extra_id_89>",
|
93 |
+
"<extra_id_90>",
|
94 |
+
"<extra_id_91>",
|
95 |
+
"<extra_id_92>",
|
96 |
+
"<extra_id_93>",
|
97 |
+
"<extra_id_94>",
|
98 |
+
"<extra_id_95>",
|
99 |
+
"<extra_id_96>",
|
100 |
+
"<extra_id_97>",
|
101 |
+
"<extra_id_98>",
|
102 |
+
"<extra_id_99>"
|
103 |
+
],
|
104 |
+
"eos_token": "</s>",
|
105 |
+
"extra_ids": 100,
|
106 |
+
"model_max_length": 512,
|
107 |
+
"name_or_path": "/scratch/acd14245px/metatrain_models/enhanced_large/0103_base_fever_40000/checkpoint-200",
|
108 |
+
"pad_token": "<pad>",
|
109 |
+
"special_tokens_map_file": null,
|
110 |
+
"tokenizer_class": "T5Tokenizer",
|
111 |
+
"unk_token": "<unk>"
|
112 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
seaborn
|
5 |
+
plotly
|
6 |
+
ipykernel
|
7 |
+
jupyterlab
|
8 |
+
jupyter
|
9 |
+
tqdm
|
10 |
+
llama-index
|
11 |
+
InstructorEmbedding
|
12 |
+
pypdf
|
13 |
+
langchain
|
14 |
+
transformers
|
15 |
+
huggingface
|
16 |
+
sentence-transformers
|
17 |
+
llama-cpp-python
|
18 |
+
python-dotenv
|
ressources/LLM_ONLY.png
ADDED
ressources/LLM_RAG_DATABASE.png
ADDED
ressources/Upload_File_QA.png
ADDED